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Abstract— People have been using edible foods since ancient times, and they continue to be an essential component of a healthy diet and 
traditional food systems today. Food crops as a major source of human energy intake, and the challenges they face due to biotic and abiotic 

stress factors, such as pollution, insects, bacteria, and unfavourable weather conditions. Detecting plant diseases in the early stage is critical for 

ensuring a stable supply of healthy food, and traditional methods of disease detection by experts are lengthy and have some limitations. The 

use of Machine and Deep learning is a key aspect of precision farming for crop growth monitoring. Plenty ML strategies, including random 
forest and support vector machines (SVMs), Convolutional Neural Networks, Deep learning as well as image processing have been used to 

precisely detect, classify, and predict plant diseases. By leveraging machine learning algorithms, farmers and agricultural experts can accurately 

detect and diagnose crop diseases, enabling them to take appropriate measures to control and prevent further spread of the disease.  This article 

provides a comprehensive overview of the different AI approaches for plant disease identification and control, drawing on a range of research 
articles in the field. The application of machine learning in agriculture holds promise for improving crop health and increasing yields and 

represents an important area of innovation for sustainable agriculture in the future.  

Keywords- Plant Pathogens, Artificial Intelligence, Deep Learning, Precision Farming.  

 

I.  INTRODUCTION  

Based on the Food and Agriculture Organization infectious 

diseases of plants and insect infestations constitute two of the 

primary factors reducing food supply and food safety [56]. 

Depending on the type of crop, the climate, and the existence of 

an infectious agent, plant diseases change periodically. Crops 

may face stresses from the environment due to biological 

factors (insects, pests, weeds, viruses, etc.), abiotic factors 

(drought, water logging, salinity, etc.), or a combination of these 

causes [73]. In contrast, a pathogen is any organism responsible 

for causing disease, including viruses, bacteria, and fungi. Harm 

to crops can range from minor physiological flaws to plant 

death, depending on the illness and stage of establishment. In 

addition to these biological influences, the plant can suffer from 

diseases brought on by physical agents such as rapid climatic 

change. 

The standard method for reducing the harm that these microbes 

inflict is to rely on pesticides [89]. The indiscriminate use of 

pesticides can result in the death of beneficial insects utilized in 

biological management and the establishment of genetic 

resistance, along with their detrimental impacts on the natural 

world [25].  

Localizing diseased regions in plantations helps to cut down the 

application of chemicals. The traditional methods for 

identifying and locating plant illnesses include molecular 

analysis on leaf tissue or direct visual identification using visual 

detection of disease symptoms emerging on plant leaves. These 

procedures take a long time and involve many personnel [23]. 

Recently, effective approaches for illness detection and 

localization have been put forth employing automatic 

monitoring and identification systems. The identification and 

assessment of agricultural anomalies now have new avenues 

with the help of developed machine-learning techniques [24]. 
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Stats gathered from the soil and cover of plants, sensors like 

remote sensing (RS), and ground devices, in additionally 

creating and evaluating algorithms that utilize machine 

learning, can all be accustomed to disease detection [50]. 

Economic viability, environmental sustainability, and 

conservation of land resources are maximized when 

management strategies are put into effect with decision tree, 

support vector machine. Overall, it makes it possible to give 

efficient therapy at an appropriate moment, place, and pace 

[44].   

Several sensors for evaluating variables related to the plant's 

canopy, leaf markers derived from remote sensing imaging, and 

IoT sensors has offered to the farming sectors [81]. Data 

processing strategies are needed to compile such sorts of data 

provided the range of retrieved data in order to further 

comprehend crop growth circumstances and the emergence of 

disease signs. Additionally, machine learning and deep 

learning-mediated data integration have made significant 

strides and, when applied to agricultural data, will have a 

significant influence on the field of plant assurance, particularly 

in the areas of disease and prospective identification of disease. 

For this purpose, a variety of multi-sensor and remote sensing-

based combining systems are being used [81]. 

In-depth study in the area of digital farming, particularly for 

plant surveillance, management, and security, has resulted in a 

sizable body. Research has been made possible by the 

utilization of agricultural-related data from various acquired 

technologies like machine learning, deep learning, etc. This 

review article highlights the causes of plant diseases and how 

AI-based methods are more effective than conventional 

techniques like biological diagnostics, mycological 

examination, microscopy, and visual inspection, and molecular 

methods for the detection of plant diseases. Machine and deep 

learning methods, like artificial neural networks, support vector 

machines, decision trees, and K-nearest neighbors, are 

employed for identifying diseases in plants, Convolutional 

Neural Networks, also deep learning algorithms like AlexNet, 

VGG-Net, and GoogleNet [22][81], are also emphasized in this 

review.  

II. MATERIAL AND METHODS 

An outline of the causes of plant diseases and their effects on 

agricultural crops was provided at the beginning of this 

extensive review. Pathogens cause infectious diseases to 

develop, and for a variety of causes, these infections can 

become epidemics that astound civilization and have incredibly 

damaging effects. 
 

A. Causes of Infectious Diseases 

 
In the case of floras, contaminated organisms, like fungi, 

protozoa, bacteria, viruses, insects, and parasitic vegetation, are 

the main causes of infectious diseases [30]. These contagious 

plant diseases have grown in importance as influencing 

variables on crop production and economic effectiveness as 

agriculture has developed [88]. These infectious agents can 

spread through a variety of channels, including airborne 

transmission, aquatic routes, transmission via animals, and 

transmission by people [50]. They can also continue to be 

infectious for a long time, frequently for months or years. Soil 

is a common place to find these pathogenic pathogens' natural 

repositories [6]. The essential and substantial phytopathogens 

are as follows 
 

a) Fungi 
 

Fungi belong to the Eukaryota domain and are distinct from 

bacteria due to their intricate cell structure, which includes a 

well-defined nucleus and mitochondria. Although fungal 

genomes have fewer similarities than those of a great deal of 

eukaryotes, they are considerably larger than those of 

prokaryotes [91]. The main components of the cellular wall of 

fungi are mannan, chitin, and chitosan, along with other lipids, 

proteins, and polyphosphates. These organisms create 

mycelium, structure made from a network of slender, branching 

hyphae. In certain instances, this mycelium does not have 

intercellular septa, resulting in the formation of a syncytium 

[71]. Fungi inhabit diverse ecological niches and can have both 

beneficial and harmful effects. They appear to have an 

evolutionary history older than that of plants, with their 

coexistence spanning an extensive period comparable to the era 

of higher plant development. Approximately Eighty percent of 

the world's current plant species engage in symbiotic 

relationships with fungi. But fungi have the ability to upset this 

delicate equilibrium and become biotrophic, hemibiotrophic, or 

necrotrophic plant pathogens [29]. Normally, pathogenic fungi 

gain entry into plants by exploiting wrecked pores and leaves. 

Nevertheless, in various instances, fungi generate particular 

spreadable bacterial form and enzymes designed to break down 

the plant's cell wall. Necrotrophs, capable of infecting a broad 

spectrum of hosts, induce swift cell demise through the 

coordinated activity of enzymes, contaminants and oxygen-

reactive species. [69]. 

In contrast, the life cycle of biotrophs is intimately linked to that 

of their natural hosts. Through specialized biotrophic hyphae in 

the interphase region, they release effector molecules that 

suppress the plant's immune system and exhibit specificity in 

their interactions with the host [15]. These hyphae absorb 

biomolecules that the plant produces. fungus can also form 

specialized hyphal outgrowths known as appressoria, aiding in 

substrate attachment and the penetration of the plant's cell wall 

via the action of enzymes that break down the cell wall in 

combination with mechanical force. The Haustoria, which 

contains numerous mitochondria and ribosomes, penetrate the 

plant's cells through the damaged areas. Typically, haustoria are 

split by an invasion of the host's cell from the plant cell plasma 

membrane. It is important to highlight that increased plant 

defenses can result in a shift Necrotrophy replaces biotrophy. 

[51]. 

Plant health is seriously threatened by phytopathogenic fungi at 

every step of crop production. Fungicides are the most common 

way to combat these fungi, but there are significant risks to the 

environment and human health associated with this approach. 

These risks include resistance evolving, resistance genes 

spreading horizontally, and the emergence of species resistant 

to several fungicides [47]. Worldwide agriculture employs 

approximately 150 various substances having various modes of 
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action that function as fungicides. Regretfully, resistance to 

almost all major classes of fungicides has been reported to date 

in a variety of phytopathogen types. Common indicators of 

fungal diseases in plants include symptoms such as wilting, 

spotting, the appearance of mold (identified by the fungus's 

mycelium and sporulation on affected organs), the development 

of pustules (containing concentrations of fungal spores), 

excessive growth, deformities, mummification resulting in rot, 

becoming darker, compaction, and reduction of the affected 

tissue [13].  

It is worth highlighting that over 10,000 fungal species have 

been identified in association with plants to date. Consequently, 

it is not unexpected that diseases brought on by other pathogenic 

microbes are less harmful than those caused by fungal 

infections. [71]. 

Fungi stand out as the primary culprits among plant pathogens 

are those that cause the greatest damage to plants in both natural 

and agricultural environments. Fungal plant pathogens usually 

display complex life and disease cycles with several phases, 

occasionally up to five separate stages. [34]. Each of these 

phases present on an individual host plant is distinguished by 

totally different reproductive techniques. Each phase produces 

different fungal spores or propagules, each with unique 

mechanisms and tendencies for spreading and infecting hosts. 

The majority of fungi take on a thread-like structure called 

hyphae, which are made up of cells with thick chitin-rich cell 

walls [28]. These organisms make entry points for hyphae by 

applying physical pressure and enzymes, and can infiltrate the 

interiors of plants, subsequently establishing colonies and 

appropriating plant nutrients. In terms of their genetic makeup, 

during the majority of their entire life cycle, fungal genomes are 

diploid, though certain phases and propagules can occur in a 

haploid state. [77]. Fruiting bodies, which are reproductive 

structures, exhibit various forms depending on the fungal group. 

These include recognizable shaped-like cup structure in 

Ascomycetes, mushroom-like structures in Basidiomycetes, 

and simple, multi-tipped branches in fungi imperfection. 
 

b) Bacteria 
 

Bacteria inhabit virtually every corner of our world and can 

exhibit pathogenicity towards flora, fauna, and mushrooms. 

DNA is the genetic material that bacteria deposit, typically 

within a chromosome, and it's not uncommon for a single cell 

to contain multiple chromosomes. Plasmids are mobile genetic 

elements that are extrachromosomal and carried by cells of 

bacteria. They can carry essential virulence genes or, on the 

other hand, components for biological management [14]. 

Additionally, bacteria may house a prophage, representing 

bacteriophage DNA that has integrated into their genome. Most 

bacteria undergo division through the process of binary fission, 

typically involving the simultaneous replication of 

extrachromosomal components as well as chromosomal DNA. 

This division necessitates the presence for membrane potential 

[76]. It's worth noticing that bacteria can possess more than one 

plasmid, with some plasmids potentially being lost in the 

process of cell division. Pantoea stewartii, for example, can 

carry up to thirteen distinct plasmids. While plasmids are 

primarily transferred by bacteria within their own populations, 

genetic information is still frequently exchanged horizontally 

within the prokaryotic domain [12]. 

Bacteria possess a unique cellular architecture characterized by 

a crucial feature: the cell membrane, which acts as a barrier 

separating their inner cytoplasm from the external environment. 

This cellular division is significant as it helps classify bacteria 

into two distinct categories: Gram +ve and Gram -ve organisms, 

based on their distinguishing cell wall structures. Conversely, 

Gram -ve bacteria exhibit a slightly different architectural 

arrangement [82]. The presence of these cell walls is crucial for 

bacteria, as they require specialized secretion systems to 

eliminate harmful substances like xenobiotics and to release 

diverse proteins and virulence factors into their surroundings. 

These secretion systems exhibit diverse structural forms, with 

Gram-negative bacteria typically featuring at least six different 

types, Gram-positive bacteria having four exclusive types, and 

both groups sharing two. Surprisingly, these secretory 

mechanisms are also essential for phytopathogenic bacteria's 

virulence [32]. It is noteworthy to highlight an intriguing 

phenomenon during bacterial cell division, wherein a natural 

imbalance arises between mother and daughter cells. Typically, 

phytopathogenic bacteria exhibit slower growth rates compared 

to counterparts that are non-pathogenic and that were recently 

isolated from crops; they grow best in temperatures within 20 

and 30°C. These bacteria are pathogens, and they have different 

kinds of genes, like virulence genes, which are pivotal for 

infection and subsidize considerably virulence, as well as 

disease-specific genes, crucial for the manifestation of diseases. 

A group of genes plays a crucial role in essential functions 

during the pathogenic process, encompassing host recognition, 

attachment of the pathogen on the surface of crop, the 

development of contagious architectures, infiltration into host 

tissue, and the subsequent colonization. Pathogenic components 

can either stay affixed on the surface of the bacteria or 

discharged into the surrounding environment [26]. While 

harmful microorganisms are accountable for causing numerous 

significant plant diseases worldwide, their impact is not as 

extensive as that of fungus or infectious microbe. Nonetheless, 

the financial toll that bacterial infections take is comparatively 

milder than those caused by fungi and viruses. Bacteria can 

disrupt various stages of crop production, posing challenges to 

agricultural productivity. Moreover, the escalating average 

annual temperatures provide reason to anticipate a growing 

threat from bacterial spot diseases and increased economic 

losses in the years ahead [61]. Anticipating a rise in summer 

temperatures by 3–4°C per year, there is an expectation that the 

occurrence of bacterial diseases will double, and plant 

infections could increase by 30–50%. This underscores the 

pressing need for proactive measures and research to mitigate 

the impact of bacterial pathogens on agriculture [67]. 

Plant infections caused by bacteria can be broadly categorized 

into two types: local bacterial blight, which damages the 

parenchymal tissues of specific plant organs, and systemic 

bacterial blight, which is characterized by the pathogen entering 

the plant's vascular system and spreading through conductive 

bundles and surrounding. [45]. 

The group of Phytoplasmas is different than group of 

spiroplasmas which is exceptionally tiny bacteria, with a 

diameter of approximately 1 µm, and are notably devoid of a 
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cell wall. Instead, they rely on a cytoplasmic membrane to 

separate themselves from the external environment. These 

bacteria are accountable for inducing phytoplasmosis and 

growth retardation in plants. Comparable to mycoplasmas, a 

related bacterial genus, phytoplasmas seem to belong to some 

of the most primitive and self-replicating life forms [53]. 

Phytoplasmas typically have a genome size ranging from 0.5 to 

1.3 million base pairs, whereas Mycoplasma genitalium have 

0.58 million base pairs. Cultivating phytoplasmas in axenic 

cultures is challenging, highlighting their significant 

dependence on host metabolism [48]. 

Phytoplasmosis has a significant adverse effect on the crop's 

quality and production. Phytoplasmosis has a significant effect 

on harvest damage; losses for eggplants, tomatoes, peppers, 

potatoes, and cucumbers can be as high as 40%, 60%, 93%, and 

100%, respectively. Plants with phytoplasmosis display 

virescence, phyllodia, and proliferation, among other 

reproductive organ dysfunctions. 

Remarkably, positive phytoplasmosis is a rare occurrence, with 

only one documented case. This phenomenon has a beneficial 

impact on the economically valuable poinsettia, a popular 

seasonal ornamental plant [89]. 

On plant surfaces, a variety of bacterial plant pathogens form 

territories. They enter the plant only in favorable circumstances, 

usually through lenticels or stomata, thus initiating the disease 

process [84]. Certain bacterial pathogens, like spiroplasmas is 

entered directly into plant tissues through feeding insect vectors 

of plant. While bacteria rely on natural openings, wounds, or 

insect-feeding sites to access plant tissues [74]. Additionally, 

it's important to note that there are several significant 

differences between fungi and bacteria. Since bacteria are 

prokaryotic organisms, their cells have haploid genomes and no 

internal, membrane-bound organelles. Bacteria have the 

capacity for genetic material exchange, facilitating remarkable 

adaptability to change with changing environmental conditions 

than that of fungi [5]. 
 

c) Viruses 
 

Small infectious agents called viruses, which lack cells, can 

only replicate inside live cells. They infiltrate a variety of living 

things, as bacteria, archaea, crops, and mammals. They may 

actively multiply and control the metabolic processes of the host 

inside the host, or they may fuse with the genetic material of the 

host and become an inert provirus. In addition to single-stranded 

and retroviruses that contain DNA, single-stranded and double-

stranded RNA viruses are the most common forms of plant 

viruses [2]. Each virus has a unique reproduction cycle and life 

cycle as a result of its unique genetic makeup. A capsid, a 

protein that forms a protective shell, encases the nucleic acid 

molecule that makes up viruses. This capsid's lipids and 

proteins occasionally combine to form a lipoprotein membrane. 

An average plant virus is about 30 nanometers in size. [18]. 

These viruses can moves horizontally as well as vertically. 

Plasmodium-like passageways, or plasmodesmata, are used by 

viruses to enter nearby cells. By modifying these pathways, 

viruses frequently develop proteins that assure the flow of 

virions, promoting the propagation of infection to nearby cells. 

The beginning of local diseases in plants is caused by this 

process [16]. A few viruses can survive for extended durations 

in cells of plants and the products formed from them thanks to 

their amazing resistance to heat and stability. Additionally, they 

can spread passively by being transported mechanically from a 

single species to another. Nevertheless, the vast majority of crop 

infections actively spread from diseased to wholesome plants 

by a means of transmission, or carrier species [57]. These 

carriers can be classified into mechanical vectors, where the 

agent does not reproduce, and biological vectors, where a stage 

of the viral development process occurs. Plant-eating 

arthropods, nematodes, and fungi serve as the primary vectors 

for plant viruses [19]. 

Plant viruses present a substantial risk to a huge number of 

crops, causing financial loss second only to those induced by 

other pathogens. Furthermore, specific viruses can infect over a 

thousand distinct plant varieties spanning over eighty-five 

families. In numerous tropical and subtropical regions, viral 

infections can spread to crop losses as high as 98%. [62]. The 

influence of viral infections fluctuates based on the stage of 

development of crop, potentially causing significant damage 

during growth while resulting in minimal harm during 

harvesting, storage, and transportation. It's noteworthy that, in 

certain instances, plants can harbor viral infections without 

exhibiting evident symptoms [59]. Symptoms associated with 

There are five major categories of viral diseases: growth 

restraint, characterized by diminished overall plant growth or 

stunted branches; coloring; deformations; necrosis; and poor 

reproduction.  

Viroids are another type of infectious agent. They are round 

RNA particles that cause a variety of plant and animal illnesses. 

They are taxonomically equivalent and are placed within the 

realm of viruses, particularly those belonging to the 

Pospiviroidae and Avsunviroidae families. Viroids, unlike 

viruses, are without a protein covering (capsid) and are made up 

of covalently bonded proteins, single-stranded RNA molecules, 

typically measuring 200–500 nucleotides in length, which is 

significantly shorter, about 50-80 times, compared to viral 

genomes. Viroids cannot encode proteins or replicate 

independently [58]. The precise molecular structure behind the 

effects of viroids remains not fully comprehended. 

Nevertheless, there is a theory suggesting that By binding to 

cellular kinases, viroids can change the phosphorylation status 

of gene products, altering the expression of genes involved in 

growth, stress, development, and protection. [21]. During an 

infection, viroids can stimulate the production of proteins linked 

to pathogenesis, instigate RNA interference can reduce gene 

expression post-transcriptionally, interfere with splicing, and 

start the demethylation of rRNA genes. It is noteworthy that 

even a single nucleotide substitution at a specific position can 

significantly alter viroid pathogenicity. In instances of infection 

with two viruses, these transport domains can exchange, 

potentially contributing to their further development [35]. The 

Avsunviroidae family of viruses lacks the central conserved 

area. They do, however, contain sequences required for the 

creation of ribozyme structures, which are required for the self-

cleavage of RNA strands. The most common symptoms 

associated with viroid illnesses are as follows: diminished 

overall plant growth or specific parts, discoloration such as 

chlorosis and anthocyanosis, and deformities affecting various 
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plant organs [52]. As a result, viruses and viroids collectively 

form a significant category of pathogens accountable for plant 

diseases.  
 

d) Complex diseases 
 

While it's commonly believed that a single species or strain of 

pathogen is responsible for causing crop infection, in nature, 

microorganisms primarily exist as part of complicated multi-

species networks. The majority of laboratory research focuses 

on single strains grown in true cultures, however, this technique 

falls short of understanding the complicated evolution of 

specific illnesses in plants. As a result, infections involving 

more than one pathogen are frequently referred to as "complex" 

due to the complexities of their identification and care 

afterward. [42]. Pathogenic bacteria, viruses, and fungus can all 

have synergistic interactions. When cowpea is infected with 

both cowpea mosaic virus and cucumber mosaic virus, for 

example, virus-virus synergy is visible. [54], resulting in more 

severe disease and greater growth retardation compared to 

single-virus infections [87]. Fungus-fungus synergy is 

relatively common and leads to complex diseases like ascochyta 

blight in peas and mango malformation disease. Brown apical 

necrosis of walnuts caused by many pathogenic fungi and the 

bacteria Xanthomonas arboricola is an example of synergistic 

interaction between diverse pathogen groups. Such pathogen-

pathogen synergism, which results in more severe illness 

symptoms than expected, is critical for understanding microbial 

pathogenesis and evolution, as well as establishing efficient 

treatment measures. [17]. 
 

e) Other Pathogens 
 

Oomycetes: A distinct microbial group that is classified as 

fungi. These are responsible for the devastating late blight 

disease of potatoes during the 19th-century Irish famines. This 

pathogen is concerned with one of the greatest mass migrations 

ever documented [10]. 

Nematodes: Microscopic worms inhabiting soil, some of which 

cause plant diseases either by piercing crop coats with their 

styles to feed, or by infiltrating plant interiors, where they drive 

plant division of cells, leading to tumors. In both situations, they 

struggle with plant cells for nutrients and water. [33]. 

Protozoa: Although only a few protozoa are Some plant 

infections, such as Phytomonas, have serious consequences. 

Species of this family live in palm xylem channels and produce 

withering problems. This is especially harmful to tropical 

countries wherein palms of coconut are an important financial 

source for both the cultivation of fruits and tourism. [11]. 

 

B. Approaches for Identifying Plant Diseases  

 

To control the harmfulness of pathogens in its initial phase is 

very significant [90]. Before the advancement of digitalization, 

the process of recognizing pathogens was done by using 

traditional approaches like visual inspection by experts [78], 

and microscopic or biological examination in the laboratories. 

While these traditional methods are costly and time-consuming 

(Table 1). Building more powerful techniques for plant disease 

detection has been made possible through some digital 

approaches such as, Image processing [80] Back Propagation in 

Neural Networks deep learning techniques [8][73]. 

TABLE 1. LIMITATIONS OF TRADITIONAL METHODS FOR PLANT 

DISEASE DETECTION. 

Method Advantages Disadvantages 

Visual 

Observation 

1. Simple and non-

destructive 

2. Can detect symptoms 

such as leaf spots, 

wilting, etc 

1. May require trained eye 

for accurate identification 

2.Limited to visible 

symptoms 

3. May miss early or latent 

infections Continuous crop 

monitoring is required 

Microscopic 

Examination 

1. Can detect pathogenic 

fungi, bacteria, and iruses 

2. Can assess disease 

severity and progression 

 

1. Some pathogens may be 

difficult to visualize under 

the microscope 

2. Requires laboratory 

setup and skills, 

3. Can identify specific 

pathogens 

4. Time-consuming process 

Biological 

Examination 

1. Can confirm the 

presence of specific 

pathogens 

2. Can determine 

pathogen races or strains 

Can be used for 

quarantine and 

certification purposes 

1. Requires specialized 

skills and equipment to 

perform assays 

2. Time-consuming process 

3. Some assays may be 

expensive or require 

sophisticated equipment 

4. Costly 

 

Image processing along with machine and deep learning 

methods enable the detection for crop diseases at their early 

stage. By analyzing high-resolution images of crops, these 

technologies are efficient in finding subtle symptoms and 

similar patterns associated with diseases. Machine learning 

techniques like SVM, KNN, CNN, Faster R-CNN, and Yolo are 

trained on large volume of real and labelled dataset, which 

makes them to accurately classify and detect specific diseases 

[8]. This improves the accuracy of disease identification, 

minimizing misdiagnoses and false positives. Deep learning 

models, Convolutional Neural Networks, for example [36] [75], 

can automate The method for examining images and detecting 

diseases. This reduces the manual effort required for visual 

inspection, making disease detection more efficient and 

scalable. Techniques such as image processing, machine and 

deep learning can be used to remote sensing data, such as 

satellite imagery or aerial photographs. This enables remote 

monitoring of large agricultural areas, providing a 

comprehensive view of crop health and disease distribution. All 

these techniques are efficient, accurate, and timely detection of 

crop diseases. They enable proactive disease management, 
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optimize resource allocation, and improve overall crop yield 

and quality, leading to a more sustainable and productive 

agriculture industry. 

C. The Machine Learning Techniques  

 
Before identifying plant diseases earlier advancements of 

computers in terms of Image processing, AI, ML, and DL played 
a crucial role by enabling to provide of accurate, reliable, and 
scalable solutions for the identification of diseases, pathogens, 
viruses, and pests in plants sustainable agriculture sector. The 
early detection of plant disease helps for better quality and food 
production to train the machine learning model [83] [20], large 
and diverse datasets of plant images are collected. These datasets 
contain images of healthy plants as well as the ones infected with 
different diseases. However, these extensive large hyperspectral 
images required pre-processing as they contain a large number 
of bands and spot positions [64]. 

 
a) Image Processing 

 
The various environmental factors like temperature, moisture 

content, etc. affect the images of plants in the dataset. However, 

the images are required to pre-process for better accuracy where 

numerous image processing techniques such as segmentation of 

images, image improvement, and classification of images can 

be used, and Feature extraction is used to identify the relevant 

features of the image. These features can be visual or numerical 

representations of prominent patterns, textures, colors, or 

shapes present in the image.  

Image Segmentation: The entire image is separated into 

numerous portions, or segments, during image segmentation. 

This separation into sections is crucial because there may be 

certain areas of the image that are empty of data. As a result, 

processing of such photos may require more time if they are not 

segmented. Therefore, by splitting a picture into segments, we 

may only employ the most crucial ones for image processing, 

which saves time and processing power [27]. It simplifies The 

interpretation of an image and makes it easier to analyze by 

grouping regions that share similar properties as color, 

intensity, texture, or spatial proximity. Image segmentation can 

be challenging due to factors like noise, occlusion, varying 

lighting conditions, and complex object structures. Thus 

Segmentation can be performed on various levels, ranging from 

single-band to dual-band processing [56] [64]. Different image 

segmentation methods are used like threshold, region-based, 

edge detection, clustering, and watershed transform.  

The collected input image is denoised and converted into to 

grayscale by using a simple threshold value [56] involves 

selecting a threshold value and classifying pixels based on 

whether their intensity values [27] are above or below that 

threshold. Accurate Image segmentation is an essential 

difficulty of computer vision. The region-Based Segmentation 

approach groups pixels into regions based on their similarity in 

terms of color, texture, or other features. It involves techniques 

such as region growing, region splitting and merging, and 

graph-based segmentation. In region-based object detection, a 

spot is separated into several areas called (K) as described by 

eq. (1). nonetheless, each pixel (p) for the image (I) only 

belongs to one area, as determined by its region-correspondence 

variable (Gould, Gao, and Koller n.d.), 

 

 Rp ∈ {1,... ,K}.                                                       (1) 

The set of pixels Pr given by eq. (2) whose region-

correspondence variable equals r, or the r-th region, is then all 

that remains.  

 

Pr = {p : Rp = r}                                                      (2) 

 

The image is separated into two smaller parts by the modified 

region-based active contour models (ACM), and then among 

the numerous subregions, the image is further separated into 

two smaller areas. before the ending condition is met [49]. Edge 

detection identifies boundaries between different objects in an 

image. It relies on detecting sudden changes in pixel intensity 

or gradients. This approach takes into account both the intensity 

of the surrounding pixels as well as the current pixel intensity 

value. Sobel operator, Canny operator, and Robert’s operator 

are three widely used edge-based approaches [27]. Based on 

their closeness in feature space, pixels are organized into 

clusters in clustering-based segmentation [63]. Non-

hierarchical clustering like K means is the most frequently 

applied clustering algorithm for picture segmentation. Instead, 

of representing a picture with hundreds of pixels, image 

segmentation uses a few key regions. Additionally, in the 

clustering technique for image segmentation, pixels that fulfill 

the criteria are grouped into one cluster, while pixels that don't 

are spread across several groups, as illustrated in fig. (1). 

Fig.1 Clustering-based image segmentation [3] 

One approach is utilizing the Watershed Transform for image 

segmentation in image processing which separates an image 

into various areas according to its color or intensity 

characteristics. The Watershed Transform is a mathematical 

morphological operation that treats the image as a topographic 

relief map [43], where the intensity values represent the height 

of the terrain. The Watershed Transform starts by identifying 

the local minima in the image, which are considered as the 

"seeds" for the catchment areas. Then, a flooding process is 

performed, where neighboring pixels are iteratively assigned to 

the catchment areas based on their intensity values. As the 

flooding process proceeds, the catchment areas gradually 

expand and merge, until all the pixels in the image are assigned 

to a specific catchment area. 
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Image Augmentation: Image enhancement techniques are 

essential in image processing to improve visual quality, enhance 

visibility, highlight important features, remove noise and 

artifacts, prepare data for analysis, and to restore degraded 

images [46]. These techniques play a vital role in fields like, 

agriculture, healthcare, surveillance, remote sensing, and many 

other applications where clear and high-quality images are 

crucial for analysis and decision-making. Techniques in the 

spatial and frequency domains are two different approaches 

used in image processing and analysis [46]. 

Spatial domain methods: The representation of an image is a 

continuous function of pixel intensities over space. The pixel 

values are directly operated upon by spatial domain algorithms 

and their neighborhood relationship in the image. Image 

Filtering like blurring filters, sharpening filters, and edge 

detection filters are convolution-based filters applied to an 

image to suppress specific features. Contrast stretching, 

histogram equalization, and dynamic range compression are 

employed to boost the total visual fidelity of the image by 

adjusting the pixel intensities. Depending on the sort of 

disturbance and how deeply it is ingrained in the image, noise 

will have an effect upon the image’s quality. Digital 

photographs typically contain the noise categories Gaussian, 

Salt & Pepper, Speckle, Poisson, and Quantization. Using filters 

like the Mean, Median, and Wiener filters, noise, distortions and 

other traces are eliminated from photographs during the 

restoration process to be able to retrieve the original information 

[46].  

Frequency domain Methods: The use of the Fourier transform 

method, portrays an image through its frequency components. 

It changes an image’s spatial representation into a frequency 

representation, enabling depth-in-frequency content for the 

image. This technique breaks an image down into its constituent 

frequencies and reveals details about global patterns and 

frequency-related characteristics. In order to denoise, blur, or 

sharpen images, filters can be built and used in the frequency 

domain to selectively enhance specific frequencies. Filters, 

including Gaussian, bilateral, or high-pass ones, to enhance 

certain aspects of an image or get rid of undesirable artifacts.  

While using techniques like the Discrete Cosine Transform 

(DCT) to remove unnecessary data and take advantage of 

frequency redundancies, the image is compressed into a more 

compact representation [32].  

Classification of Images: The separation of images involves 

grouping or identifying captures according to their visual 

content into many set-in-stone groupings. It entails educating a 

deep learning or machine learning model to spot patterns and 

features in images that are characteristic of particular classes. A 

dataset of tagged images is given to an algorithm or model, and 

each image is assigned to the appropriate class. The model 

develops a decision boundary between several classes and 

learns to extract pertinent features from the images throughout 

the training phase. The model then assigns new, unseen images 

to the appropriate class using these learned attributes. 
 

b) Decision Tree 
 

A supervised ML approach called a decision tree is adapted to 

solve problems related to regression and classification. The 

structure it creates is a A tree mimics a schematic, with each 

internal node representing a characteristic, each branch 

representing a decision rule, and every node in the leaf 

representing the result or class label [66]. The algorithm selects 

the feature that offers the best split at each node in a way that 

maximizes information gain or minimizes impurity at each node 

[85], leading to the purest leaf nodes (homogeneous samples). 

It does this by using a training dataset to partition the data 

recursively based on various features. Numerous measures, 

including Gini impurity by eq. (3), entropy by eq. (4), and 

misclassification error by eq. (5), are used to quantify the 

impurity or classification error.  

 

Gini(n) = 1 — ∑(p_i)²                                             (3) 

Entropy(n) = — ∑(p_i * log2(p_i))                         (4) 

Misclassification error(n) = 1 — max(p_i)              (5)  

  

where the probability of class i at a given node is denoted by 

p_i, and n is the node. 

Root Node (R): The topmost node in the tree, which represents 

the initial decision. 

Internal Node (I): Nodes that make decisions based on a feature 

and have child nodes. 

Leaf Node (L): Terminal nodes that represent the final decision 

or a class label. 

The mathematical structure of the decision tree is represented 

as a binary tree. 

___________________________________________ 

Algorithms: DT 

___________________________________________ 

At the root node: 

If (Feature A <= Threshold X): child node in left 

Else: visit the child node in the right 

At the child node in the left:  

If (Feature B <= Threshold Y): Go to a leaf node with a 

predicted value/class 

Else: Go to another internal node or leaf node 

At the child node in the right: 

Visit another leaf node 

___________________________________________ 
 

c) Support Vector Machine 
 

Regression analysis and classification are two applications for 

the supervised machine learning method known as Support 

Vector Machine (SVM). Both binary and multi-class 

classification issues shown in Fig. (2) and fig. (3) can be solved 

using it [60]. In a high-dimensional feature space, SVM creates 

a hyperplane [40] or a collection of hyperplanes [1]. The data 

points are divided into various classes using these hyperplanes 

[68]. Finding the ideal hyperplane that maximally divides the 

classes and performs well on previously unknown data [39]. 

The training dataset with N data points each represented by a 

feature vector X and a corresponding label Y. In binary 

classification, Y can take two values -1 or 1, representing the 

two classes. SVM seeks to locate a hyperplane in the feature 

space that separates the data elements of different classes with 

maximum margin. A weight vector P defines this hyperplane. 

and a bias term a as described in eq. (6). n: 
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P.X + a = 0                                                            (6)   

         

where "." dot is the product between two vectors. 

Now, for each data point (X_i, Y_i) in the training set, define 

the constraint as mentioned in eq. (7). 

 

Y_i * (P. X_i + a) >= 1                                          (7) 

This constraint ensures that the point of data lies on the 

appropriate side of the decision boundary with a margin of at 

least 1. The goal of SVM is to identify the optimal values of W 

and b that satisfy these constraints and maximize the margin. 

To find the optimal values, formulate the SVM problem as an 

optimization problem with the objective function as described 

by eq. (8) 

minimize (1/2) * ||P||^2 

subject to   

Y_i * (P.X_i + a) >= 1 for all i = 1…….n           (8) 

While adhering to the limitations, this objective function seeks 

to minimize the weight vector W's norm. Since it's a convex 

optimization issue, methods like gradient descent and quadratic 

programming can be used to solve it quickly. 

Fig. 2 SVM-based binary classification [79]  

 
Fig. 3 SVM-based Multiclass classification [79] 

 

 
d) KNN Classifier 

 
a non-parametric method that operates without assuming 

anything regarding the distribution of the underlying data. The 
"K" in KNN stands for the quantity of closest neighbors that are 
taken into account while generating predictions [9]. It operates 
under the tenet that comparable data points typically have 
comparable target values or belong to the same class. The 
algorithm measures the similarity between data points using a 
distance metric, like the Euclidean distance [9] [92]. The steps 
involved in finding the optimal K-nearest point as shown in Fig. 
(4) 

 

Fig. 4 Steps in KNN Classifier 

 

D. Deep Learning Techniques  

 
a) ANN 

 
Deep learning is an artificial neural network-based subset of 

machine learning. ANN, often called as  Neural Networks, 

which are employed for a variety of tasks, including 

classification, regression, clustering, and pattern recognition 

[41][55][72]. ANN is made up of nodes that are interconnected 

and structured in layers, and each node applies a mathematical 

function to the weighted total of its inputs to produce an output. 

an artificial neuron takes multiple inputs, multiplies each input 

by a corresponding weight, sums up these weighted inputs, 

applies a non-linear activation function, and produces an output 

given by eq. (9). 

 

𝑦 = 𝑓∑([𝑖 = 1]𝑛𝑤𝑖. 𝑥𝑖) + 𝑏                          (9) 

where: 

- y is the neuron's output. 

- The function of activation is f. 

- Weight connected to input x_i is denoted by w_i. 

- The biassed referrals is b. 

 

Numerous fields, including pattern recognition, natural 

language processing, image processing, epert systems, robotics, 

gaming, drug discovery, and genomics, use Artificial Neural 

Networks of various types, including single-layer, multi-layer 

perceptrons, ,probabilistic neural networks, and Convolutional 

Neural Networks radial-basis function networks [31]. 
 

b) CNN 
 

CNNs are designed to automatically and adaptively learn spatial 

hierarchy characteristics from input data [83]. They consist of 

multiple layers, each performing a specific task in the process 

of feature extraction and classification [79] [1] as shown in fig. 

(5).  

Convolutional Layers: These layers apply convolutional filters 

to the input elements. Each filter scans a small area of input to 

detect specific features. As the filters convolve across the input, 

it produces feature maps that capture different patterns and 

structures. 

Feature Map (also known as an activation map) from the 

previous layer, denoted as F_in, with dimensions (P_in x Q_in 

 

 

 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 11s 

Article Received: 07 October 2023 Revised: 23 November 2023 Accepted: 20 December 2023 

___________________________________________________________________________________________________________________ 
 

 

    753 

IJRITCC | December 2023, Available @ http://www.ijritcc.org 

x Q_in), where P_in is the height, Q_in is the width, and R_in 

is the total number of inputed channels. 

Pooling Layers: These strata diminish the multifaceted nature 

of space of the feature maps produced by the layers of 

convolution. Pooling can be done through operations like max 

pooling, where only the maximum value within a pool is 

retained, or average pooling, where the average value is 

computed. Pooling helps to extract and retain the most crucial 

elements while minimizing computational complexity. 

Activation Functions: These functions introduce non-linearities 

to the outputs of the convolutional and pooling layers described 

in eq. (10). Common choices incorporate the function of the 

Rectified Linear Unit, which assign minus values to zero, 

softmax functions [79]. 

 

 F_i(c, d) = max(0, F_i(c, d))                                (10) 

 

where c and d are spatial coordinates and F_i is feature map. 

Fully Connected Layers: These layers establish connections 

between each neuron in a layer and every other layer's neuron., 

mimicking a traditional neural network. To learn high-level 

representations based on the extracted features, fully connected 

layers are usually positioned towards the end of the network. 
 

 
Fig.5 Layers involved in CNN 

 
c) AlexNet 

 
The deep CNN architecture known as AlexNet was created by 

Geoffrey Hinton, Ilya Sutskever, and Alex Krizhevsky. 

AlexNet comprises five convolutional layers among its eight 

layers, followed by three fully connected layers which was 

winner of ILSVRC-2012 competition. The network uses 

rectified linear units (ReLU) as activation functions, which 

helps in training faster compared to traditional activation 

functions like sigmoid or tanh. It uses data augmentation and 

dropout techniques, which enhances generalisation and limit 

overfitting. 
 
 

d) VGG-Net 
 

The Visual Geometry Group Network or VGG-Net [4], is an 

intricate CNN design intended for image classification 

applications. In 2014, the Visual Geometry Group at Oxford 

University developed it. With the addition of some max polling 

and dropout layers, VGGNet was created to increase the depth 

of CNN to thirteen convolutional layers, hence improving the 

performance of AlexNet. In contrast to AlexNet, which placed 

second in the ISLSRVC-2014 competition, VGGNet changed 

the size of its filters [22]. There are other variants of VGG-Net, 

however the most often used one is called VGG-16. It includes 

16 weight layers, consist of three fully connected layers and 

thirteen convolutional layers [7], In addition, VGG-19 has 

nineteen weight layers. 

 
e) GoogleNet 

 
GoogleNet released The term "inception modules," also known 

as inception V-1, refers to a grouping of several convolutional 

filter sizes combined into a single layer. This enables the 

network to simultaneously recognize features at many scales 

and record various spatial information levels. GoogleNet has a 

novel 22-layer network architecture that includes a stack of 

several inception modules. In comparison to earlier 

architectures, it greatly lowered the quantity of parameters and 

still obtained good accuracy on the ImageNet dataset. Because 

of its effectiveness, GoogleNet used for real-time applications 

on devices with limited resources. 

The table provided shows the results of the evaluated 

performance comparison between baseline CNN, AlexNet, 

VGGNet, and GoogleNet for the nine tomato plant disease types 

(tomato leaf mould, tomato early blight, tomato late blight, 

tomato mosaic virus, tomato target spot, tomato bacterial spot, 

and viral leaf curl yellowing). The increase in CNN layers leads 

the deep learning algorithm perform better, as seen in fig. (6). 

TABLE 2. PERFORMANCE AND ERROR RATE MEASUREMENT OF DL 

ARCHITECTURES [22] 

DL Architecture 
No. of CNN-

Layers 
Performance 

Error 

Rate 

Baseline 2 84.58% 0.47 

AlexNet 5 91.52% 0.51 

GoogleNet 22 89.68% 0.30 

VGGNet 13 95.24% 0.17 

 

 
 

Fig.6 Precision, errors, and multiple layers in deep learning methods 
 

III. RESULTS AND DISCUSSION 

The results of several machine and deep learning techniques 

that are utilized by many researchers to diagnose plant diseases 

are listed in Table 3. These algorithms use pattern recognition 

and classification to identify and diagnose a range of plant 

diseases, either singly or in combination, to construct plant 

disease detection systems. The comparative study assesses the 
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efficacy of different algorithms and approaches in a comparable 

space, as shown in Figure (7) and (8). 

 

TABLE 3. REVIEW OF ML AND DL TECHNIQUES 

Sr. 

No 
Method Used Accuracy Plant 

Infected with 

Disease 

1 GLCM [70] 91.37% Mango Anthracnose, 

Powdery Mildew, 

Doney Mildew 

2 GLRM [70] 86.71% Mango Anthracnose, 

Powdery Mildew, 

Doney Mildew 

3 Decision Tree 

[37] 

97.58% Khasi 

Mandari

n Orange 

plants 

Citrus Tristeza Virus 

(CTV) 

4 Enhanced-

Decision 

Tree[37] 

98.10% Soybean stem-blight 

5 SVM [68] 76.00% Soybean Brown spots and 

bacterial blight, 

Soybean Mosaic 

Virus, Downy 

Mildew. 

6 SVM [40] 90.00% Chilli cucumber mosaic 

7 SVM [38] 88.10% Tomato Spetoria Leaf Spot, 

Leaf Mold, and Late 

Blight 

8 SVM [3] 92.85% Sevral 

Plants 

Alternaria, 

Alternata, 

Anthracnose, 

Bacterial Blight, and 

EarlyLeaf Spot 

9 KNN [37] 99.36% Khasi 

Mandari

n Orange 

plants 

Citrus Tristeza Virus 

(CTV) 

10 KNN [68] 64.00% Soybean Brown spots and 

bacterial blight, 

Downy Mildew, 

Soyabean Mosaic 

Virus 

11 KNN [9] 89.90% Citrus Citrus Tristeza virus 

12 Mahalanobis 

Classifier [70] 

83.17% Chilli Gray mildew, smut, 

red hot, leaf spot. 

13 ANN Classifier 

[70] 

84.11% Beans Rust, early and late 

blight dot 

14 CNN [68] 96.00% Soybean Soybean brown 

patches and bacterial 

blight Mosaic Virus, 

Downy Mildew 

15 CNN- Three-

layer classifier 

[56] 

89.00% coffee 

plants 

Cerscospora, Leaf 

Rust 

16 CNN- SDGM 

[79] 

99.60% Rice Blast, Brownspot, 

Tungro 

18 AlexNet [22] 91.52% Tomato Mosaic virus, late 

blight, leaf mold, 

and target spot 

19 GoogleNet [22] 89.68% Tomato Mosaic virus, late 

blight, leaf mold, 

and target spot 

20 VGGNet [22] 95.24% Tomato Mosaic virus, late 

blight, leaf mold, 

and target spot 

21 SVM and CNN 

[1] 

95.00% Potato Early and late spot 

 
 

 
Fig. 7 Comparative analysis of ML and DL algorithms 

 

 
Fig.8 Performance analysis of ML and DL models on various crop diseases 

detection 
 

IV. CONCLUSION 

The various AI approaches most likely machine and deep 
learning strategies strongly applied for plant disease detection 
have been condensed into this review article. Furthermore, this 
article classifies techniques based on their level of accuracy, 
making it easier for researchers to utilize individual or 
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conjunction methods for effective outcomes. These techniques 
are constantly growing and improving with advancements in the 
fields of research on machine and deep learning, enabling greater 
precision and effectiveness in the detection and management of 
plant diseases. Following an in-depth assessment, it emerged 
that deep learning methods have shown the best results in plant 
disease detection compared to traditional machine learning 
algorithms. With their ability to automatically extract intricate 
features from plant images, deep learning models can achieve 
higher accuracy and faster processing times. The future scope of 
deep learning algorithms for plant disease identification is 
promising. As technology advances, more sophisticated deep 
learning architectures can be developed that are specifically 
tailored for plant disease detection. These models can leverage 
larger datasets and utilize more advanced deep learning 
techniques. Deep learning algorithms can be combined with 
other techniques which provides the accuracy and reliability of 
disease detection can be further improved. 
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