
International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                        57 – 60 

_______________________________________________________________________________________________ 

57 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

Sequence Similarity between Genetic Codes using Improved Longest Common 

Subsequence Algorithm 

A. Murugan 

Associate Professor, PG & Research Department  

of Computer Science 

DrAmbedkar Government Arts College, 

Vyasarpadi, Chennai – 600 039, Tamilnadu. 

 e-mail: amurugan1972@gmail.com 

U. Udayakumar 

M.Phil Research Scholar, PG & Research Department  

of Computer Science 

DrAmbedkar Government Arts College, 

Vyasarpadi, Chennai – 600 039, Tamilnadu. 

 e-mail: udaya.vijay13@gmail.com 

 

 
Abstract— Finding the sequence similarity between two genetic codes is an important problem in computational biology. In this paper, we 

developed an efficient algorithm to find sequence similarity between genetic codes using longest common subsequence algorithm. The algorithm 

takes the advantages over the edit distance algorithm and improves the performance. The proposed algorithm is tested on randomly generated 

DNA sequence and finding the exact DNA sequence comparison. The DNA genetic code sequence comparison can be used to discover 

information such as evolutionary divergence and ways to apply genetic codes from one DNA sequence to another sequence. 

 

Keywords-Dynamic Programming, DNA sequence comparison, DNA Similarity algorithms, Longest Common Subsequence. 

__________________________________________________*****_________________________________________________ 

I. INTRODUCTION 

DNA is the hereditary material found in almost all 
organisms [1]. DNA resides in every cell in the body of 
organism. The DNA is a double helix like structure made up of 
two twisted strands. A single strand carries a nucleotide bases, 
these bases are adenine (A), guanine (G), cytosine (C), thymine 
(T). These chemical letters are in the form of triplets which 
defines a meaningful code. The triplets give arise to specific 
amino acid which later helps in the formation of protein[2]. An 
important property of DNA is that it can replicate, or make 
copies of itself. Each strand of DNA in the double helix can 
serve as a pattern for duplicating the sequence of bases as 
shown in Fig.1. This is critical when cells divide because each 
new cell needs to have an exact copy of the DNA present in the 
old cell. 

 

 

Figure 1.  Structure of DNA 

The knowledge of a DNA sequence and gene analysis can be 
used in several biological, medicine and agriculture research 
fields such as: possible disease or abnormality diagnoses, 
forensic science, pattern matching, biotechnology, etc[3][4]. 
The analysis and comparison studies for DNA sequences 
connected information technology tools and methods to 

accelerate findings and knowledge in biological related 
sciences. 

II. LITERATURE SURVEY 

There are many traditional pattern matching methodologies 
available in literature, they are Naive Brute force, Boyer 
Moore, Knuth Morris Pratt and Dynamic algorithms[2]. Pattern 
matching is used in various processes, like codon optimization 
which is carried out to enhance the efficiency of the DNA 
expression vectors used in DNA vaccination by increasing 
protein expression[5]. 

A. Naive Brute force 

It is one of the simplest algorithm having complexity 
O(m*n). In this, first character of pattern P(with length m) is 
aligned with first character of text T (with length n). Then 
scanning is done from left to right. As shifting is done at each 
step it gives less efficiency[6]. 

B. Boyer-Moore Algorithm 

It performs larger shift-increment whenever mismatch is 
detected. It differs from Naïve in the way of scanning. It scans 
the string from right to left; unlike Naive i.e. P is aligned with 
T such that last character of P will be matched to first character 
of T. If character is matched then pointer is shifted to left to 
very rest of the characters of the pattern[7][8]. If a mismatch is 
detected at character c, in T which is not in P, then P is shifted 
right to m positions and P is aligned to the next character after 
c. If c is part of P, then P is shifted right so that c is aligned 
with the right most occurrence of c in P. The worst time 
complexity is still O(m+n). 

C. Knuth-Morris-Pratt 

This algorithm is based on automaton theory. First a finite 
state automata model M is being created for the given pattern 
P. The input string T with Σ= {A, C, T, G} is processed 
through the model. If the pattern is present in text, the text is 
accepted otherwise rejected. 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                        57 – 60 

_______________________________________________________________________________________________ 

58 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

III. EFFICIENT LCS ALGORITHM 

The longest common subsequence problem is to find a 
substring that is common to the two given strings. Given two 
sequences, find the length of the longest subsequence present in 
both of them. A subsequence is a sequence that appears in the 
same relative order, but not necessarily contiguous [16]. 

In LCS problem, we eliminate the operation of substitution 
and allow only insertions and deletions. A Subsequence of a 
string v is simply an ordered sequence of characters from v. For 
example, if v = ATTGCTA, then AGCA and ATTA are 
subsequences of v whereas TGTT and TCG are not. Where 
ATGC denotes Adenine, Thymine, Guanine, Cytosine. 
Formally, we define the common subsequence of strings[9]. 

 
1 ≤ i1 ≤ i2< . . . ik ≤ n   (1) 

 

and a sequence of positions in w, 

 

1 ≤ j1 ≤ j2< . . . jk ≤ m   (2) 

 
Let si,j be the length of an LCS between v1...vi, the i-prefix of v 
and w1...wj, the j-prefix of w. Clearly, si,0 = s0,j = 0 for all 1 ≤ i 
≤ n and 1 ≤ i ≤ n one can see that si,j satisfy the following 
recurrence: 

 

si,j = max  

si-1,j                                   

si,j-1

si-1,j-1+1,   if vi=wj

  (3) 

Note that one can "rewrite" these recurrences by adding some 
zeros 
 

si,j=max  

si-1,j+0                     

si,j-1+0                     

si-1,j-1+1,   if vi=wj

  (4) 

 
The LCS computation is like the recurrence given at the 

equations (3) and (4), if we were to build particularly gnarly 
version of Manhattan and gave horizontal and vertical edges 
weights of 0, and set the weights of diagonal edges equal to + 
1[10]. 

 
The following is the efficient algorithm for solving longest 

common subsequence problem [15] that improves the time 
complexity and performance. 
 
Algorithm Backtracking Pointers and stored three values up, 

right and diagonal in Multidimensional array 

while x! := ―0‖ then 

  ifsolna,b == ―Diagonal‖ then 

   a := a - 1 

   b := b - 1 

  else 

   b := b - 1 

   a := a - 1 

  end if 

 return LCS[A.length][B.length] 

end while 

 

The following Fig. 2 shows Multidimensional array 

representation of the LCS algorithm 

 
Figure 2.  Multidimensional Array representation for efficient  

LCS Algorithm 

The following Fig. 3 shows LCS Time Complexity and 
Performance 

 

Figure 3.  LCS Time Complexity and Performance 

IV. DNA SEQUENCE SIMILARITY 

We proposed an algorithm to find the similarity between 
DNA genetic code sequences. In DNA sequence similarity, 
find the matching percentage between DNA genetic codes. In 
this paper, we proposed a new method for DNA sequence 
similarity. 

A modified Longest Common Subsequences algorithm is 
proposed in [15] and which is applied in the edit distance 
algorithm, which is an existing algorithm. 

The following is the modified edit distance algorithm used 
to find the similarity between two genetic codes. 

 
Algorithm 1: Edit Distance for DNA genetic code 

AlgorithmeditDistance(s1,s2) 

cost[] : = s2.length + 1 

for i:= 0 to s1.length do 

lastvalue := i 

for j:= 0 to s2.length do 

if(i == j) 

cost[j] : = j 

elseif(j > 0) 

newValue : = costs[j - 1] 

costs[j - 1] : = lastValue 

lastValue : = newValue 

end if 

end for 

end for 

end algorithm 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                        57 – 60 

_______________________________________________________________________________________________ 

59 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

The following Fig. 4 explain the entire process of finding 

DNA sequence similarity 

 

 
Figure 4.  Implementing LCS Algorithm in DNA Genetic Code  

Sequence Similarity 

The computation of the similarity score s(v,w) between v and 

w, while the table on the right presents the computation of the 

edit distance between v and w under the assumption that 

insertions and deletions are the only allowed operations[14]. 

The following TABLE Ishows DNA genetic code sequence 

similarity 

 

TABLE I.  GENETIC CODE SIMILARITY BETWEEN SEQUENCES 

Human DNA Animals DNA 
% of 

matching 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 
GTCACGATTTGGGGGATGC

TTCTGGCTC------A 
100.00% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GTCACGATTTGGGGGA
TGCTTCTGGCTC------A- 

100.00% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCACGATTTGGGAGA

TGCTTCTGGCTC-----G- 
91.67% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCAGAATTTGGGGGA

TGCTTCTGGCTC-----T- 
88.89% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GTCAGAATTTGGGGGA
TGCTTCTGGCTC-----T- 

88.89% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCAGAATTTGGGGGA

TGCTTCTGGCTC-----T- 
88.89% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

ATCACAGTTGGGGGAT
GCCACTGGCCT-----C- 

75.00% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

ATCACAA-TTGGGGG-

TGCCACGGTCCT-----C- 
69.44% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

ATCACAATTTGGGGAA

CACCACTGGCAT-----C- 
69.44% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GTCACAATTTGGAGGA
TGTTACTGGCAT-----C- 

77.78% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCACAGTTTGGAGGA

TGTTACTGACAT-----C- 
72.22% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GTCATAGTTT----
GATTATATGGGCTT-----

C- 

58.33% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GTCACAATTTGGGGGA
TACTACTGGCAT-----C- 

80.56% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCACAGTTTAGGGGG

TACTACTGGCAT-----C- 
72.22% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

GTCACAATTTAGGAAG

TGCCACTGGCCT-----C- 
72.22% 

GTCACGATTTGGGGGATGC
TTCTGGCTC------A- 

GCCTCTCTTT-----------
CTGCCCTGCAGGC- 

33.33% 

GTCACGATTTGGGGGATGC

TTCTGGCTC------A- 

----------------

TGCTACTAATAT-----T- 
36.11% 

 

 

 

Algorithm 2:  genetic code similarity 

Algorithmsimilarity(s1, s2)  

longer := s1, shorter := s2 

 if (s1.length() < s2.length())  

longer := s2 

shorter : = s1 

longerLength := longer.length(); 

   if (longerLength == 0)    

return (longerLength - editDistance(longer, shorter)) / 

(double) longerLength; 

 end if 

end algorithm 

 

The following Fig. 6 shows the Output for Similarity 

Sequences between genetic codes 

 

 
Figure 5.  Output for DNA Genetic Code Similarity Sequences 

A. Time Complexity 

The Time Complexity of Sequence Similarity Algorithms 
 
TC(DSSA) = max{TC(LCS), TC(EDA), TC(SS)} 
 
TC(DSSA) = max{O(n

2
), O(n

2
), O(n

2
)} 

 
So the time complexity of the DNA Sequence Similarity 
Algorithm is O(n

2
) 

 
The best case and average case time complexity 
T(n) = max((O(n

2
) and O(levelnumber)), O(|n|). 

 
The Worst case time complexity 
T(n) = max((O(n

3
) and O(levelnumber)), O(|n|). 

 
 
 
 
The following Figure 7 shows Graphical Representation of 
DNA Genetic Code between Human and Animals 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication                               ISSN: 2321-8169 

Volume: 5 Issue: 7                                                        57 – 60 

_______________________________________________________________________________________________ 

60 
IJRITCC | July 2017, Available @ http://www.ijritcc.org 
_______________________________________________________________________________________ 

 
Figure 6.  Graphical Representation of DNA Genetic Code  

Similarity Sequences 

V. DNA SEQUENCE SIMILARITY 

In this paper, we proposed an algorithm for finding similarity 

between two strings. It calculate the matching percentage 

between two strings by using longest common subsequence 

(LCS) and edit distance approach by avoiding unnecessary 

comparisons that reduces its time complexity. The running 

time is better than dynamic programming based algorithms 

and it is due to time control parameter. The DNA sequence 

similarity algorithm is tested on 50 samples with two input 

DNA genetic code sequence strings and selected randomly in 

Pentium processor machine is used and it shows good results. 

In future the algorithm is implemented in Multiple Longest 

Common Subsequences which will also have many 

applications. 

 

REFERENCES 

[1] Neil C.Jones and Pavel A.Pevzner, "An Introduction to Bioinformatics 
Algorithms" (2004) 

[2] Jiaoyun Yang, Yun Xu, Yi Shang, ―An Efficient Parallel Algorithm for 
Longest Common Subsequence Problem on GPUs‖, World Congress 
Engineering, 2010. 

[3] Maier. D, ―The Complexity of some problems on subsequences and 
super sequences‖, ACM, (25), 1978, 332-336. 

[4] B.Lavanya and A.Murugan, "Mining Longest Common Subsequence 
and other related patterns using DNA operations", International Journal 
of Computer Application, (18), 2012, 38-44. 

[5] Hirosawa et al, "Comprehensive study on iterative algorithms of 
multiple sequence alignment". Computational Applications in 
Biosciences, 1995, 13-18. 

[6] Mahdi Esmaieli and Mansour Tarafdar, "Sequential Pattern Mining from 
multidimensional sequence data in parallel", International journal of 
Computer theory and engineering, 2010, 730-733. 

[7] Stormo. G, "DNA binding sites: representation and discovery". 
Bioinformatics, 2000, 16:16-23 

[8] Kyle Jensen. L., Mark Styczynski. P., Isidore Rigoutsos, and Gregory 
Stephanopoulos. V, "A generic motif discovery algorithm for sequential 
data". Bioinformatics, 22(1) 2006, 21-28. 

[9] Wang. L. and Jiang. T, "On the complexity of multiple sequence 
alignment". Journal of Computational Biology, 1994, 337-348. 

[10] Nan Li and Tompa. M, "Analysis of computational tools for motif 
discovery". Algorithms of molecular biology, 2006, 1-8. 

[11] Suyama. M., Nishioka. T., and Junichi. O, "Searching for common 
sequence patterns among distantly related proteins". Protein 
Engineering, 1995,1075-1080. 

[12] Smith. H. O., Annau. T. M., and Chandrasegaran.S, "Finding sequence 
motifs in groups of functionally related proteins". Proceedings of 
National Academy (USA), 1990, 826-830. 

[13] Bin Ma, "A polynomial time approximation scheme for the closest 
substring problem". LCNS Springer, 2000, 99-107. 

[14] Martinez. M, "An efficient method to find repeats in molecular 
sequences". Nucleic Acid Research, 1983, 4629-4634. 

[15] U. Udayakumar and A. Murugan  "An Efficient Algorithm For Solving 
Longest Common Subsequence Problem", IJESMR, 2017,4(5). 

[16] www.geeksforgeeks.org/dynamic-programming-set-4-longest-common-
subsequence 

 

 

 

 

http://www.ijritcc.org/

