
International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

49

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

The Study of SOA Architecture

Ms. Megha Shinde

#1
 Mr. Dharam Sherathia

#2
 Ms. Devika Galia

#3
 Mr. Abhijeet Pasi*

4
#
Student, Department of Information Technology

*Lecturer, Department of Computer Technology

Shah and Anchor Kutchhi Polytechnic, Mumbai, India

meghashinde135@gmail.com
#1

,dharam0409@gmail.com
#2

, sweetyde10@gmail.com
#3

,abhijeetpasi2008@gmail.com
*4

Abstract: The early services used to develop a software created great deals of complexity in building new applications, integrating existing

modules and at the same time keeping up the maintenance. This paper presents how the rise of Service Oriented Architecture (SOA) handles the

complexity faced by Information Technology (IT). The today`s business organizations related to IT demands for something new, ease of

handling, better understanding and responsiveness .The main aim in various business organizations is to achieve all these things in a systems in

terms of justifying their projects with a return on the investments done on it. To achieve the changing needs in the business environment i.e.

adding some new services to the organization bio-data is by changing the business process quickly as per demand. To make a system that

includes all the effective features required for uplifting the businesses market value and fulfilling end users requirements and yet being cost

effective is to use Service Oriented Architecture (SOA). Web Services plan an important part in implementing Service Oriented Architecture

(SOA).

__*****___

I. INTRODUCTION

Service Oriented Architecture (SOA) is viewed as major

concept of modern information technology. SOA is an

architectural style or a design approach or organizing, utilizing

and developing distributed system for building business

applications as a set of loosely coupled interacting software

components. SOA is not appropriate for all types of IT

applications. For example, it is appropriate for real-time

applications. While using SOA paradigm, business

applications are looked as set of black box components in

order to uplift the level of abstraction and thus, ease the reuse

of components in various systems. Business goals such as easy

and flexible integration, reduced costs, attractive and

innovative services to customers and reaction to opportunities

are satisfied by using SOA approach. SOA represents many

ways as an evolution of client server architecture. SOA can be

implemented using various web services.

II. ARCHITECTURAL CONSTRAINTS

There are no official standard SOA constraints, the only

constraints you get are the ones that each vendor or supplier of

SOA platforms and systems decides to give you. Naturally,

each different solution in this space will differ in those

constraints.

Since there are no standard constraints, it really depends on

the design of solution/implementation and the requirements to

be fulfilled.

Important pointers while implementing SOA without

constraints are -

Error handling in case there is a thread exhaustion at the

service provider end, the consumer should read time out and

should not keep waiting for the response from the provider.

Proper Management of resources and garbage collection at the

provider end extrapolating the expected load and designing

the infrastructure according to the expected load.

Again for eliminating Constraints for messages & interfaces,

keeping in mind the packet size of these messages, the form of

the messages should not be too heavy and easily consumable

and parseable. Caching is a very important aspect to be noted

for these points since it can eliminate constraints for unique

request handling.

1.1. Interfaces

The interface constitutes a contract defining the functionality

of the service in a platform-independent manner. This implies

that the invocation mechanism (protocols, descriptions, and

discovery) must comply with widely accepted standards

enabling a client to use the service from anywhere applying

any OS or programming language. The service interface

description publishes the service signature, e.g. its input,

output, and error messages. The (expected) behavior is

described by the behavior description and the QoS (Quality of

Service) describes both functional and non-functional service

quality attributes, e.g. performance, security attributes,

reliability, etc. Services exhibit several other properties. They

are stateless, this means that users can use them without

knowing the current conditions of the service; the service

maintains its own state. [7]

1.2. Messages

Message passing is a form of communication for inter-module

interaction. Processes communicate with each other by

sending and receiving messages, where each sent mechanism

must match the corresponding receive mechanism. Services

communicate with each other and with consumers using

messages. The service interface defines the messages a service

can process. To achieve

Platform-and language-independency, messages are typically

constructed using XML documents that comply with the

corresponding XML Schemas. In contrast to Remote

Procedure Call (RPC) the mechanism is an asynchronous

communication, directly supported by message passing. A

schema limits the vocabulary and structure of messages. An

extensible schema allows new versions of services to be

introduced without modifying existing services. [7]

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

50

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

III. BASIC SOA

SOA constitutes a concept to provide services to clients

through published interfaces and to coordinate interaction

through the exchange of messages. Generally, the basic SOA

describes the

Relationship between three kinds of participants: the service

providers, the registry, and the service requestors. The service

represents a logical separation of declaration and

implementation, its implementation is hidden from the client

and can be subject to changes which may not influence the

client so long as the service interface stays unchanged. [7]

Figure 1. Basic SOA Architecture[12]

1.3. Advantages & Disadvantages of Basic SOA

Advantages include:-

 Improved Information Flow.

 Lower software development and management costs.

 Performance measurement.

 Security attack detection.

 Data confidentiality and integrity.

 Ability to develop new function combinations rapidly.

 Ability to optimize performance, functionality, and cost.

 Easier introduction of system upgrades.

 Ability to integrate existing assets.

 Improved reliability.

 Ability to scale operations to meet different demand levels.

Disadvantages include:-

SOA would not be suitable for applications with GUI

functionalities. Those applications would become more

complex if they use SOA which requires heavy data exchange.

Also application requiring asynchronous communication can’t

make use of SOA. Also in case of standalone and short lived

applications’ implementations, SOA will become an added

burden.

IV. EXTENDED SOA

The higher layer of the SOA pyramid provides support for

service composition and management, and service

orchestration, transaction, and security. In the composition

layer several atomic services can be consolidated into one

composite service.

Depending on their requirements clients apply atomic or

composite services as applications and/or solutions. Service

aggregators may utilize such composite services as

components in further service compositions thus becoming

service providers by publishing the service description they

create.

A composer of several services must encompass

functionalities such as:

 Coordination: establish and manage the control of data

flow among the services.

 Monitoring: subscribe to events generated by component

services.

 Conformance: ensure integrity of composite service by

controlling conformance of component services.

 Quality of Service (QoS): bundle QoS of component

services to derive the composite QoS,

Figure 2. Extended SOA Architecture

1.4. Advantages & Disadvantages of Extended SOA

Advantages include [10]

 Service Reusability

In SOA, an application is built by assembling small, self-

contained, and loosely coupled pieces of functionality.

Therefore, the services can be reused in multiple

applications independent of their interactions with other

services.

 Easy Maintainability

Since a service is an independent entity, it can be easily

updated or maintained without having to worry about other

services. Large, complex applications can thus be managed

easily.

 Greater Reliability

SOA-based applications are more reliable since small,

independent services are easier to test and debug as compared

to massive chunks of code.

 Location Independence

The services are usually published to a directory where

consumers can look them up. This approach allows a service

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

51

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

to change its location at any time. However, the consumers

are always able to locate their requested service through the

directory look up.

 Improved Scalability and Availability

Multiple instances of a single service can run on different

servers at the same time. This increases scalability and

availability of the service.

 Improved Software Quality

Since services can be reused, there is no scope for redundant

functionality. This helps reduce errors due to inconsistent

data, and thereby improves the quality of code.

 Platform Independent

SOA facilitates the development of a complex product by

integrating different products from different vendors

independent of the platform and technology.

 Increase productivity

Developers can reuse existing legacy applications and build

additional functionality without having to develop the entire

thing from scratch. This increases the developers'

productivity, and at the same time, substantially reduces the

cost of developing an application.

Disadvantages include[10]

 Increased Overload

Every time a service interacts with another service, complete

validation of every input parameter takes place. This increases

the response time and machine load, and thereby reduces the

overall performance.

 Complex Service Management

The service needs to ensure that messages have been delivered

in a timely manner. But as services keep exchanging messages

to perform tasks, the number of these messages can go into

millions even for a single application. This poses a big

challenge to manage such a huge population of services.

 High Investment Cost

Implementation of SOA requires a large upfront investment by

means of technology, development, and human resource.

Not Recommended For:-

 Homogenous

Implementing SOA for applications that use the technologies

of a single vendor will not be cost-effective. For example, if

an application is built in Java, then it would be better to use

methods of Java rather than using HTTP for inter-component

communications.

 GUI – Based

SOA would not be suitable for applications with GUI

functionality, e.g. a map manipulation application. Such

applications require heavy data exchange, which in turn would

increase the complexity of the application if SOA is used.

 Real –Time

SOA is not desirable to be used with strictly-enforced

response times since the services communicate

asynchronously.

 Stand Alone

It would be futile to invest in SOA for stand-alone non-

distributed applications, which do not require request and

response-based calls.

V. CHALLENGES IN ENTERPRISE SYSTEM

Following are the changes that the SOA tries to overcome [3]

 Isolating business logic

 Interoperability

 Software silos

 Redundancies

1.5. Isolating Business Logic

Large organization with large business needs and business

setup’s, have business application that have business logic and

are much more tough or complex to build when compared to

normal or general application. The Business logic can be set

or defined by a non-IT person from the organization. They

change the logic according to their own will without

understanding the efforts put behind to develop the old

business logic and the complexity a small change can create in

an application. We can consider a organization’s purchase

system where a business rule can be set where the purchases or

service cost exceeds a threshold value pre-determined has to

go through approval of higher authority in the organization .

The main problem in programming is to maintain the business

logic while maintaining the computer logic, which at times can

be a very difficult or tedious task. To avoid unnecessary

changes the management need to be educated about the

problems to isolate the business logic.

1.6. Interoperability

Interoperability is a requirement of an enterprise system; it is

also a challenge at the same time. In a service-oriented

architecture, ―interoperability‖ refers to the ability of the

service to be invoked by any potential client of the service

There are several attributes of a SOA that make this possible:

Even if it is, in the context of the business world, the company

might acquire another company that uses a totally different IT

system altogether. The result is that additional work has to be

done to allow interoperability. This can yet introduce another

problem associated with the reluctance to migrate or upgrade

existing system. Having invested effort and resources to allow

interoperability, migrating to a new system might pose

challenges if it is not compatible with existing system. From a

semantic point of view, service-oriented architectures by

themselves do not offer any guarantees. Semantic

interoperability depends on how the interfaces to a service are

described and how the meaning of the information is shared

with potential clients of the service. Several issues that need to

be addressed include

 How to know exactly what a service actually offers

 The quality of the service it offers.

1.7. Software Silos

In the physical world, a silo is a robust structure meant to hold

and contain things to prevent what is outside from getting in

and what is inside from getting out. The problem is that many

applications and IT systems end up becoming such silos. The

term usually refers to systems that cannot communicate with

other related third party systems. Information flow is usually

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

52

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

vertical. As the business expands or business requirements

change, the end result is that there are a cluster of siloed

systems that cannot cooperate or work with one another.

1.8. Redundancies

A problem that is common to many large companies is that

there are many similar yet slightly different applications that

are used throughout the organization. Each department usually

comes out with its own version of software components rather

than coordinate with other departments to see if component

reuse is possible[u]. The latter turns out to take too much

effort as such it usually involves chores such as going through

rounds of inter-departmental meetings to determine the

common functionalities amongst the different systems and

what or what not to be included in the system. While

companies might have policies or guidelines for such

scenarios, often when deadlines are tight, or due to budget

issues, it is often more convenient to build the application the

department needs rather than coordinate across divisions. The

problem can surface again when one company acquires

another and realize that they too have similar applications with

the similar functionality. Another issue with such redundancies

is the increased effort and complexity to maintain such

applications. Any change in business policy will probably

render these applications obsolete. All updates will then have

to be propagated through these instances of the application.

Again in the context of enterprise systems, where the problem

is magnified, this translates to higher cost of IT costs and

inefficiencies, something that is not desirable.

VI. WEB SERVICES: WHY TO USE IT?

Web Services are pervasive, simple and platform-neutral. Web

services are able to execute different sized business

applications. It is a technology that can be used to implement

SOAs. It is necessary to note that the SOA is an architectural

style or design approach that is independent of any technology

platform. As the name indicates, web services offers services

over the web. Web services communicate with other web

applications for exchanging data. It can convert existing

applications into web based applications. The World Wide

Web Consortium (W3C) provides a more specific and

accurate definition:―A Web service is a software system

designed to support interoperable machine-to-machine

interaction over a network. It has an interface described in a

machine-processable format(specifically WSDL). Other

systems interact with the Web service in a manner prescribed

by its description using SOAP messages, typically conveyed

using HTTP with an XML serialization in conjunction with

other Web-related standards.‖[7].

The web services are of two types-

1. Static Web Services

2. Dynamic Web Services

1.9. Web Services Architecture

Figure 3. Basic Web Service Architecture [2]

Figure 4. Web Service Generic Architecture [4]

 The main components shown in Figure are as follow:

Service provider: is the component that implements the

web service and informs its existence to other requester by

publishing its interface and access information in the

service registry.

 Service broker (registry): is responsible for the availability

of both interface and implementation access information

for the Web service to any service requester.

 Service requester: searches the service within the service

broker to find its service provider then connect to the latter

using specific communication protocol.[4]

1.10. Web Services Core Standards

The following are the standards used in implementing web

services:

 Simple Object Access Protocol [SOAP]

SOAP is the standard format which is based on XML protocol

and it is independent of programming languages, used to

exchange messages between service users and providers when

web services technology is used.[1]

 Web Services Description Language [WSDL]

 A WSDL document is written in XML format for describing

the implementation of a service as a set of operations on

messages containing either document-oriented or procedure-

oriented information. It is used by the service provider and the

service requester. The WSDL documentation includes the

information about the location of the web services and

message format.[3] WSDL specifies the operational

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

53

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

characteristics of a Web service using an XML document. It

provides a notation to answer the following questions:

-What (is this service about)?

-Where (does it reside)?

-How (can it be invoked)? [6]

 Universal Description Discovery and Integration [UDDI]

UDDI is a platform-independent, XML based registry that

allows service providers to list their services and define how

service consumers can locate and interact with those

services[1].

Table 1: Web Services Core Standards [4]

 SOAP WSDL UDDI

Stands

for

Simple

Object

Access

Protocol

Web

Services

Description

Language

Universal

Description

Discovery

and

Integration

Usage A format

for

sending/rec

eiving

messages

Describe

and locate

web

services

A directory

for storing

information

about web

services

Languag

e

XML XML WSDL

1.11. Hypertext Transfer Protocol [HTTP]

HTTP is an application protocol for distributed and

collaborative information system. It is protocol to exchange or

transfer hypertext. It is the foundation of data communication

for the World Wide Web.

1.12. Extensible Markup Language [XML]

XML is a language which is simple and very flexible text

format. It is set of rules for encoding documents in a format

which is both human-readable and machine-readable. It is

designed to store and transport data.

1.13. Advantages & Disadvantages of Web Services

Advantages include:

 Interoperability

This is the most important benefit of Web Services. When

different applications are integrated and provided with a

service, it may happen that it may not be suitable for each but

thanks to the use of standards-based communications

methods, Web Services are virtually platform-independent.

 Usability

Web Services allow the business logic of many different

systems to be exposed over the Web. This gives your

applications the freedom to chose the Web Services that they

need. Instead of re-inventing the wheel for each client, you

need only include additional application-specific business

logic on the client-side. This allows you to develop services

and/or client-side code using the languages and tools that you

want.

 Reusability

 Web Services provide not a component-based model of

application development, but the closest thing possible to

zero-coding deployment of such services. This makes it easy

to reuse Web Service components as appropriate in other

services. It also makes it easy to deploy legacy code as a Web

Service[11].

 Deployability

Web Services are deployed over standard Internet

technologies. This makes it possible to deploy Web Services

even over the fire wall to servers running on the Internet on

the other side of the globe.

Disadvantages include [11]

 Although the simplicity of Web services is an advantage in

some respects, it can also be a hindrance. Web services use

plain text protocols. This means that Web service requests are

larger than requests encoded with a binary protocol. The extra

size is really only an issue over low-speed connections, or

over extremely busy connections.

 As Web Services are public over the network for all user,

there is huge question of security of the data accessed by

individual or business organizations.

 The problem with HTTP and HTTPS when it comes to

Web services is that these protocols are "stateless"—the

interaction between the server and client is typically brief and

when there is no data being exchanged, the server and client

have no knowledge of each other. More specifically, if a client

makes a request to the server, receives some information, and

then immediately crashes due to a power outage, the server

never knows that the client is no longer active. The server

needs a way to keep track of what a client is doing and also

to determine when a client is no longer active.

 Typically, a server sends some kind of session

identification to the client when the client first accesses the

server. The client then uses this identification when it makes

further requests to the server. This enables the server to recall

any information it has about the client. A server must usually

rely on a timeout mechanism to determine that a client is no

longer active. If a server doesn't receive a request from a client

after a predetermined amount of time, it assumes that the

client is inactive and removes any client information it was

keeping. This extra overhead means more work for Web

service developers.

VII. BENEFITS OF SOA

 Reuse - The ability to build services that are reusable in

many applications.

 Efficiency - The ability to quickly and easily create new

services.

 Loose technology coupling - The ability to model services

independently over distributed networks.

 Greater flexibility in strategic applications.

 Faster time to value from IT.

 Modernized strategic applications.

International Journal on Recent and Innovation Trends in Computing and Communication ISSN: 2321-8169

Volume: 4 Issue: 1 49 - 54

54

IJRITCC | January 2016, Available @ http://www.ijritcc.org

__

 Lower the lifetime cost of applications or infrastructure.

 Reuse as a goal to bring products or capabilities to the

market faster[4]

VIII. DRAWBACKS OF SOA

 SOA is only an architecture: It’s a set of best practice,

not technology. SOA can do what you want to do, not what

you can buy.

 The problem of SOA is organization, culture and

politics: People are unwilling to accept change and share

resources, neither devote for other people’s items.

 Core architecture problem of SOA is control, quality

and management: It’s destined to fail without control.

IX. CONCLUSION

With these study of SOA architecture, we can say that for

higher value of business organization in modern technological

market, systems will be designed using SOA and deployed to

all using Web Services. This will probably help the IT related

organizations to come up with innovative ideas to provide

services to user with various applications.

REFERENCES

[1] Phil Bianco, Software Engineering Institute;

Rick Kotermanski, Summa Technologies;

Paulo Merson, Software Engineering Institute. Evaluating a

Service-Oriented Architecture. Software Architecture

Technology Initiative Unlimited distribution subject to the

copyright. TECHNICAL REPORT CMU/SEI-2007-TR-015

ESC-TR-2007-015.September 2007.

www.sei.cnu.edu/reports/07tr015.pdf

[2] Chapter 1 Introduction to SOA with Web

Services. www.aw-bc.com/samplechapter/0321180860.pdf

[3] Goh Chun Lin; Koh Eng Tat Desmond; Naing Tayza Htoon;

Nguyen Van Thuat; Chapter10 Service Oriented Architecture. A

Fresh Graduate’s Guide to Software Development Tools and

Technologies. Software Development Tools and Technologies.

www.comp.nus.edu.sg/~seer/book/2e/ch10.%20Oriented%20Ar

chitecture.pdf

[4] Mahmoud Mohamed AbdAllah, Senior R&D Engineer-SECC,

mmabdallah@itida.gov.eg; Waseim Hashem Mahjoub, Senior

R&D Engineer-SECC. A Quick Introduction to SOA. ©

Copyright Software Engineering Competence Center 2013.

www.secc.org.eg/recocape/Documents/SECC_Tutorials_A%20

Quick%20Introductio%20to%20SOA.pdf

[5] Chief Editor: Duane Nickul; Contributors/Editors: Laurel

Reitman; James Ward ;Jack Wilber. Service Oriented

Architecture (SOA)and Specialized Messaging Patterns.

Technical White Paper.

www.adobe.com/enterprice/pdfs/Services_Oriented_Architectur

e_from_Adobe.pdf

[6] Mark Endrei; Jenny Ang ;Ali Arsanjani; Sook Chua; Philippe

Comte; Pål Krogdahl; Min Luo; Tony Newling. Patterns:

Service Oriented Architecture and Web Services. International

Technical Support Organization.

www.redbooks.ibm.com/redbooks/pdfs/sg246303.pdf

[7] Introduction to Service Oriented Architectures(SOA).

Responsible Institutions: ETHZ(Concept), ETHZ(Overall),

ETHZ(Revision). Introduction to Service Oriented

Architectures (SOA). http://www.eu-orchestra.org - Version

from: 26.10.2007.

[8] Erin Cavanaugh Product Marketing Manager Altova. Web

services: Benefits, challenges, and a unique, visual development

solution. www.altova.com/whitepapers/webservices.pdf

[9] Ying-Hong Wang; Jingo Chenghorng Liao. Department of

Computer Science & Information Engineering, Tamkang

University Tamshui, Taipei County, Taiwan. Why Or Why Not

Service Oriented Architecture. 978-0-7695-3729-0/09 $25.00 ©

2009 IEEE DOI 10.1109/SSME.2009.126. 2009 IITA

International Conference on Services Science, Management and

Engineering.tkuir.lib.tku.edu.tw/space/retrieve/77331/Why+or+

Why+Not+Services+Oriented+Architecture.pdf

[10] http://www.buzzle.com/articles/advantages-and-disadvantages-

of-service-oriented-architecture-soa.html

[11] https://social.msdn.microsoft.com

[12] https://en.wikipedia.org/wiki/Serviceoriented_architecture#/med

ia/File:SOA_Elements.png

