
International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 71 - 75

__

71
IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

A Comparitive Study of Different Customized Multiprocessor Scheduling

Algorithms on Multicore Architecture

Prof. Prerena Jaipurkar

Assi. Prof., Computer Engineering Department

SRPCE, NAGPUR (Maharashtra), India

preranajai@gmail.com

Prof. Pranali D. Tembhurne

Assi. Prof., Computer Engineering Department

SRPCE, NAGPUR (Maharashtra), India

pranali.tembhurne06@gmail.com

Prof.Sweta R Bhelonde
Assi. Prof., Computer Engineering Department

SRPCE, NAGPUR (Maharashtra), India

shwetabhelonde@gmail.com

Abstract– In real-time systems, a task needs to be performed correctly and timely. The correctness of each computation depends

on both the logical results of the computation and the time at which results are produced. So “time” is most important in real-time

application systems. Multicore and multithreaded CPUs becomes the new approach in real time system to achieve system

performance, power efficiency, and software concerns in relation to application and workload characteristics. Multiprocessor Real

time system requires an efficient algorithm to determine when and on which processor a given task should execute. The work

presents a comparative study of different customized Multiprocessor scheduling algorithms which maximizes system performance

and decides the real time tasks that can be processed without violating timing constraints. A major advantage of the simulation is

that it provides a fast and easy way to evaluate the system performance in Real-time system and consider tasks priorities which

cause higher system utilization and lowers deadline miss time. To overcome the run-time scheduling and the prioritized-

partitioned problems, accomplish a multiprocessor system which is capable of accurately simulating a variety of processor,

memory, multiprocessor system on chip configurations and evaluate their effect on real-time system to improve the system

performance.

Index Terms – Real Time Operating System, Uniprocessor, Multi-Processor, Scheduling Algorithm, Context Switch, Multicore.

__*****___

I. INTRODUCTION

The Central Processing Unit (CPU) is the heart of the

computer system so it should be utilized efficiently. For this

purpose CPU scheduling is very necessary. CPU Scheduling

is one of the fundamental concepts of Operating System

Sharing of computer resources between multiple processes is

called scheduling [1].

A. Scheduling on Uniprocessor
Uniprocessor platforms include one processor on which

number of jobs can be executed. In uniprocessor scheduling,

central state information of the entire task states accurately. In

a single processor multi-programming system, multiple

processes/tasks are contained within memory. Processes

survive between Running, Ready, waiting, Blocked, and

Suspend. A main goal is to keep the processor busy, by

allocating task to the processor to execute, and always having

at least one process able to execute. To keep the processor

busy is the main purpose of process scheduling. Uniprocessor

scheduling is categorized as follows:

 Long-term scheduling: To add to the processes those

are fully or partially in memory.

 Short-term scheduling: The decisions as to which

process to execute next or in future.

The goal of the scheduling in Uniprocessor is to achieve

high processor utilization, high throughput, number of

processes completed per unit time and low response time. But

Uniprocessor scheduling affects the performance of the

system, because it determines which process will wait and

which will progress.

B. Scheduling on Multiprocessors
Multiprocessors platforms include more than one

processor on which jobs can get executed. The approaches to

multiprocessor real-time scheduling can be categorized into

two classes: partitioned and global. Under partitioning, the set

of tasks is statically partitioned among processors, that is, each

task is assigned to a unique processor upon which all its jobs

execute. In contrast to partitioning, under global scheduling, a

single system, priority is used, and a global ready queue is

used for storing ready jobs. The performance of each and

every scheduling algorithm depends on performance

parameters like deadline of a task, release time of a task,

execution time of a task, laxity of a task, CPU utilization of a

task, number of preemption, resource utilization etc and all the

tasks will be scheduled according to their unique assigned

priority scheduling. It takes decisions to introduce new

processes for execution or re-execution.

The various CPU scheduling algorithms are

FCFS (First Come, First Serve) CPU Scheduling :

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 71 - 75

__

72
IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

In this scheduling the process that request the CPU

first is allocated to CPU first.

SJF (Shortest Job First) CPU Scheduling :

In this scheduling the process with the shortest CPU

burst time is allocated to CPU first.

Priority Scheduling :

In this scheduling the process with high priority is

allocated to CPU first.

Round Robin Scheduling :

RR scheduling is used in timesharing systems. It is

same as FCFS scheduling with preemption is added to switch

between processes. A static Time Quantum (TQ) is used in

this CPU Scheduling

The various scheduling parameter for the selection of

the scheduling algorithm are :

Context Switch :

A context switch is process of storing and restoring

context (state) of a preempted process, so that execution can

be resumed from same point at a later time. Context switching

is wastage of time and memory that leads to the increase in the

overhead of scheduler, so the goal of CPU scheduling

algorithms is to optimize only these switches.

Throughput :

Throughput is defined as number of processes

completed in a period of time. Throughput is less in round

robin scheduling. Throughput and context switching are

inversely proportional to each other.

CPU Utilization :

It is defined as the fraction of time cpu is in use.

Usually, the maximize the CPU utilization is the goal of the

CPU scheduling

Turnaround Time :

Turnaround time is defined as the total time which is

spend to complete the process and is how long it takes the time

to execute that process.

Waiting Time :

Waiting time is defined as the total time a process has

been waiting in ready queue.

Response Time :

Respond Time is better measure than turnaround time.

Response time is defined as the time used by the system to

respond to the any particular process. Thus the response time

should be as low as possible for the best scheduling.

II. RELATED WORK

In real-time systems, produced output is equally important

as the logical correctness. That is, real-time systems must not

only perform correct operations, but also perform them at

correct time. A logically correct operation performed by a

system can result in either an invalid, completely a waste of

time, or degraded output depending upon the strictness of time

constraints. Based on the level of strictness of timing

constraints, real-time systems can be classified into three

broad categories: hard real-time, soft real-time, and firm real-

time systems.

In Hard Real-Time System requires that fixed deadlines

must be met otherwise disastrous situation may arise whereas

in Soft Real-Time System, missing an occasional deadline is

undesirable, but nevertheless tolerable. System in which

performance is degraded but not destroyed by failure to meet

response time constraints is called soft real time systems. Such

systems must be predictable and temporally correct. The

designer must verify that the system is correct prior to runtime

–i.e., for instance, for any possible execution of a hard real-

time system, each execution results in all deadlines being met.

Even for the simplest systems, the number of possible

execution scenarios is either infinite or prohibitively large.

Therefore, simulation or testing can be used to verify the

temporal correctness of such systems. In the proposed work,

following are the standard parameters that characterize tasks

of real-time applications.

A Processor: A processor performs the major number of

critical situation that drives any computer’s operation.

Processor plays such an important role that computers are

often defined and described exclusively on the type of

processor. Processors work by performing calculations based

on specific instructions that software running on the computer.

These instructions, which are loaded into the processor when

an application runs, tell the processor how to manipulate

amount of data stored in the computer’s memory (RAM).In

other words, processors are constantly merged through

instructions and data that are loaded into it from the

computer’s memory.

A Multiprocessor: Multiprocessor system contains more than

one such CPU, allowing them to work in parallel. This is

called SMP, or Simultaneous Multiprocessing. As the

multiprocessor architectures are already widely used, it

becomes more and more clear that future real-time systems

will be deployed on multiprocessor architectures.

Multiprocessor architectures have certain new features that

must be taken into consideration. For that application

programs executing on different cores usually shared caches,

interconnect networks, and shared memory bandwidth, making

the conventional design practices not suitable to multi-core

systems.

Cache: A small amount of high-speed memory residing on or

close to the CPU as shown in Figure-1. In addition to working

with the main memory, processors also work with a special

type of high-speed memory referred to as cache. In fact, most

of the time processors work directly with various types of

cache memory and this cache memory, in turn, works with the

main memory. Essentially, the cache memory acts as a high-

speed buffer in between the processor and main memory,

shuffling data into the processor as it needs it, or requests it.

As a result, the processor takes advantage of the high-speed

cache memory and therefore works faster, which, in turn,

makes the computer that the processor drives, operate faster.

Cache memory supplies the processor with the most frequently

requested data and instructions. Level 1 cache (primary cache)

and Level 2 cache (secondary cache) is the cache second

closest to the processor and is usually on the system board.

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 71 - 75

__

73
IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

Figure. 1: Cache memory

Multitasking: In computing, multitasking is a method by

which multiple tasks, shares common processing resources

such as a CPU. Multitasking refers to the ability of the OS to

quickly switch between each computing task to give the

impression that different applications are executing

simultaneously. As CPU clock speeds have increased steadily

over time, not only do applications run faster, but OSs can

switch between applications more quickly. This provides

better overall performance. Many actions can happen at once

on a computer, and individual applications can run faster.

Single Core: In a single CPU core, as shown in Fig. 2 tasks

runs at any point in time, meaning that the CPU is actively

executing instructions for that task. Multitasking solves this

problem by scheduling which task may run at any given time

and when another waiting task gets a turn.

Figure. 2: Single-core systems schedule tasks on 1

CPU to multitask

Multicore: When running on a multicore system, multitasking

OSs can truly execute multiple tasks concurrently. The

multiple computing engines work independently on different

tasks. For example, on a dual-core system, as shown in Figure-

3,four applications - such as word processing, e-mail, Web

browsing, and antivirus software - can each access a separate

processor core at the same time and can multitask by checking

e-mail and typing a letter simultaneously, thus improving

overall performance for applications.

Figure. 3: Dual-core systems to execute two tasks

simultaneously

The OS executes multiple applications more efficiently by

splitting the different applications, or processes, between the

separate CPU cores which shown in Fig. 4. The computer can

spread the work - each core is managing and switching

through half as many applications as before - and deliver

better overall throughput and performance. In effect, the

applications are running in parallel.

Thread : A thread is a basic unit of CPU utilization,

consisting of a program counter, a stack, and a set of registers.

Traditional processes have a single thread of control - There is

one program counter, and one sequence of instructions that

can be carried out at any given time. Multi-threaded

applications have multiple threads within a single process,

each having their own program counter, stack and set of

registers, but sharing common code, data, and certain

structures such as open files. Multithreading extends the idea

of multitasking into applications, so subdivide specific

operations within a single application into individual threads.

Each of the threads can run in parallel. The OS divides

processing time not only among different applications, but also

among each thread within an application.

Figure. 4: Parallel Execution on Multicore System

In a multithreaded, an example that application might be

divided into four threads - a user interface thread, a data

acquisition thread, network communication, and a logging

thread. All can prioritize each of these so that they operate

independently which shown in Fig. 5. Thus, in multithreaded

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 71 - 75

__

74
IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

applications, multiple tasks can progress in parallel with other

applications that are running on the system.

Figure 5: Dual-core system enables multithreading

Applications that take advantage of multithreading

have numerous benefits, including the following:

 More efficient CPU use

 Better system reliability

 Improved performance on multiprocessor computers

In many applications, a single-threaded request, a

synchronous call effectively blocks, or prevents, any other task

within the application from executing until the operation

completes. Multithreading prevents this blocking.

While the synchronous call runs on one thread, other parts of

the program that do not depend on this call run on different

threads. Execution of the application progresses instead of

stalling until the synchronous call completes. In this way, a

multithreaded application maximizes the efficiency of the

CPU because it does not idle if any thread of the application is

ready to run.

A. Scheduling Algorithms

Earliest Deadline First Scheduling (EDF) algorithm

assigned the highest priority if it is having the shortest

deadline. The highest priority belongs to the task with the

closest deadline while the task with the longest deadline has

the lowest priority. Deadline of a task plays an important role

in earliest deadline first scheduling and schedule the number

of tasks on the processor.

Earliest Deadline First until zero laxity (EDZL)

Scheduling algorithms is a hybrid preemptive priority

scheduling scheme in which jobs with zero laxity are given

highest priority and other jobs are ranked by their respective

deadlines that a number of jobs missing their deadline are

significantly reduced if scheduled by EDZL on m identical

processors.

III. LITERATURE SURVEY

Jian Chen and Lizy K.John [1] proposed a scheduling model

that heterogeneous multicore processors promise high

execution efficiency under diverse workloads, and program

scheduling is critical in exploiting this efficiency. This work

presents a novel method to leverage the inherent

characteristics of a program for scheduling decisions in

heterogeneous Multicore processors. The method projects the

core’s configuration and the program’s resource demand to a

unified multi-dimensional space.

Zheng Wang Michael F.P.O’Boyle [2] describes that the

thread mapping has been extensively used as a technique to

efficiently exploit memory hierarchy on modern chip-

multiprocessors. It places threads on cores in order to amortize

memory latency and/or to reduce memory contention.

Kumar et al. [3] proposed a straightforward scheduling policy

uses trial-and-error approach to find the match between

programs and cores and a dynamic program scheduling

approach.

Julian Bui, Chenguang Xu [4] states that cache memories are

widely used in microprocessors to improve the system

performance and several works have been done in cache

fields. Cache size, cache protocols, associate numbers, etc. are

all important parameters for performance.

Sherry Joy Alvionne [5] proposed a technique which to be

used in multiple processors executing in parallel. Also,

because of embedded systems have limited memory size,

adding more functions in the system will limit the data that can

be stored in the memory.

Chen and John [6] employ fuzzy logic to calculate the

program-core suitability, and use that to guide the program

scheduling. However, their method is not scalable since the

complexity of fuzzy logic increases exponentially as the

number of characteristics increases.

C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun [7]

specifies that, the problem of reliability that is a serious threat

to the current computer industry. While recent advances have

embraced low-cost reliability solutions as a replacement for

traditional high-cost full redundancy techniques, focused on

single threaded workloads running on a single core.

Gulati et al. [8] uses efficiency threshold to dynamically

allocate processor for the given task. All of these methods

exploit intra-program diversity, and could adapt to program

phase changes. In scheduling scheme exploits inter-program

diversity and statically allocates programs to cores by

analyzing inherent program characteristics.

M. Diener, F. Madruga, E. Rodrigues, M. Alves [9] in this,

focused on how to improve barrier performance by either

reducing memory contentions introduced by accessing shared

flags within a barrier or by reducing the critical path of a

barrier.

M. Bertogna, M. Cirinei, G. Lipari [10] presents the Fixed

Priority until Zero Laxity (FPZL) scheduling algorithm for

multiprocessor real-time systems. FPZL is similar to global

fixed priority preemptive scheduling; however, whenever a

http://www.ijritcc.org/

International Conference On Emanations in Modern Engineering Science and Management (ICEMESM-2017) ISSN: 2321-8169

Volume: 5 Issue: 3 71 - 75

__

75
IJRITCC | March 2017, Available @ http://www.ijritcc.org (Conference Issue)

task reaches a state of zero laxity it is given the highest

priority.

IV. CONCLUSION

In real-time system, to overcome the run-time

scheduling problem and the prioritized-partitioned problem

implement a multiprocessor system on chip simulator which is

capable of accurately simulating a variety of processor,

memory, multiprocessor system on chip configurations and

evaluate their effect on real-time system to improve the system

performance with the help of different algorithms i.e. FPZL

(Fixed Priority until Zero Laxity) & DPZL (Dynamic Priority

until Zero Laxity). The main objectives of the proposed

system to Simulate and evaluate effect of algorithm on real

time system to improve performance and to increase efficiency

and maximum utilization of the processor.

REFERENCES

[1] Jian Chen and Lizy K. John”Efficient Program Scheduling

for Heterogeneous Multi-core Processors”, IEEE Micro,

pp 17-25, May 2008.

[2] M´arcio Castro, Lu´ıs Fabr´ıcio Wanderley G´oesy,

Christiane Pousa Ribeiro, “A Machine Learning-Based

Approach for Thread Mapping on Transactional Memory

Applications”, IEEE, pp. 978-1-4577-1950-2011.

[3] R. Kumar, et al, “Single-ISA heterogeneous multi-core

architectures: the potential for processor power

reduction”, Micro-36, pp. 81-92, Dec. 2009.

[4] Julian Bui, Chenguang Xu” Understanding Performance

Issues on both Single Core and Multi-core Architecture”

IEEE Transaction Parallel Distribution System, pp. 599–

611, 2009.

[5] Jinkyu Lee, Arvind Easwaran, Insik Shin, Insup Lee, 2011.

"Zero-Laxity based Real-Time Multiprocessor

Scheduling", Journal of Parallel and distributed

computing, 84, pp. 2324-2333.

[6] J. Chen and L. K. John,“Energy aware program scheduling

in a heterogeneous multicore system”, IISWC’08, pp.1-9,

Sept. 2008.

[7] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun,

“Stamp: Stanford transactional applications for multi-

processing,” in IEEE International Symposium on

Workload Characterization, 2008.

[8] D.P.Gulati et al., “Multitasking Workload Scheduling on

Flexible Core Chip Multiprocessors”, PACT’08, pp187-

196, Oct. 2008.

[9] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J.

Schneider, P. Navaux, and H.-U. Heiss, “Evaluating

thread placement

based on memory access patterns for multi-core processors,”

in IEEE International Conference on High Performance

Computing and Communications,sept., pp. 491–496,

2010.

[10] M. Bertogna, M. Cirinei, G. Lipari. “FPZL Schedulability

analysis of global scheduling algorithms on

multiprocessor platforms”. IEEE Transactions on

parallel and distributed systems, 20(4): 553-566.April

2009.

[11] H. S. Behera, Naziya Raffat, Minarva Mallik “A

Modified Maximum Urgency First Scheduling

Algorithm with EDZL for Multiprocessors in Real Time

Applications” International Journal of Advanced

Research In Computer Science and Software

Engineering, Volume 2, Issue 4, April 2012.

[12] Komal S. Bhalotiya “Customized Multiprocessor

Scheduling Algori for Real time Systems” Proceedings

published by International Journal of computer

Applications, 7-8 April, 2012.

[13] Sumedh.S.Jadhav & C.N. Bhoyar, “FPGA Based

Embedded Multiprocessor Architecture”, International

Journal of Electrical and Electronics Engineering

(IJEEE) ISSN (PRINT): 2231 – 5284, Vol-1, Issue-3,

2012.

[14] Parisa Razaghi, Andreas Gerstlauer, “Host-Compiled

Multicore RTOS Simulator for Embedded Real-Time

Software Development,” Software Engineering, IEEE

Transactions on, 978-3-9810801-7-9, 2011.

[15] Sherry Joy Alvionne V. Sebastian,” Implementation of

Phase-II Compiler for ARM7TDMI-S Dual-Core

processor” In Proc. RTSS, pp. 398-409, 2011.

[16] Prerana B. Jaipurkar1 and Kapil N. Hande2, “ Efficient

Thread Mapping in Multicore Architecture with Laxity

Based Algorithms”, International Journal of Computer

Science and Telecommunications [Volume 3, Issue 12,

December 2012]
.

http://www.ijritcc.org/

