Finite Element Analysis of a Backhoe loader to study Fatigue Failure

Roshan V. Marode \(^1\)
Assistant Professor
MGI-COET, Shegaon
Maharashtra, India
roshan.marode@gmail.com

Anand G. Bhatkar \(^2\)
Assistant Professor
MGI-COET, Shegaon
Maharashtra, India
anandbhatkar@gmail.com

Abstract—Inmechanical components fatigue failure is common cause. Fatigue crack are initially starts at stress concentration. & it is mostly found in the design of engineering components. In this paper work on the static structural analysis and cyclic load analysis had been performed on a backhoe loader with the help of finite element method. Fatigue values are used to find S-N curves which withdraws data regarding possible cycles at which crack initiates. Primary aim of the study is to compare the failure conditions of the component for static loading and reversed cyclic loading.

Keywords—FEA; loader; backhoe; fatigue; ANSYS

I. INTRODUCTION

Backhoe-Loader is best preferred for excavation & earth moving owing its versatility. Many construction firms consider the backhoe to be the key part of earthmovers. The backhoe is used for excavation of hard & tough material, handle consistent soil and parts of rocks made by blasting. It is also to the back of the tractor& easily lifts weighty loads. The backhoe grows its name from the placement of the scooper bucket assembly on the back of the tractor. The backhoe involves of three pieces – the boom, the stick or dipper, and the bucket. The boom is the superior arm piece. The stick is the inferior arm piece. The bucket is the digging and lifting tool at the end. Backhoe Loaders are used chiefly to excavate below the normal surface of the ground on which the parts of machine rests & load it into trucks or tractor drawn wagons or onto conveyor belts. They are accomplished of excavating all classes of earth, except solid rock, without prior loosing. They are improved to excavating channels, pits for the basement, &general grading work, which require precise control of pits. Chassis of commercial vehicles have nearly same appearance since the model was established. It specifies that there is very gentle and stable improvement in the chassis. In the period of globalization & tough competition the use of machines is growing for the earth moving works, considerable attention has been focused on designing the earthmoving tools. Thus it is very much essential for the designers to provide not only an equipment of supremedependability but also of minimum weight & cost, keeping design safe under loading conditions by cautious stress analysis of this machines.

II. PROBLEM FORMULATION

In the present study a backhoe loader bucket is considered for analysis. The objective of this work is to analyze the static loading capacity and to determine the fatigue life of the backhoe loader. The analysis is performed using ANSYS software and modelling of the bucket is performed using Solidworks. Following table lists the properties of the structural steel which is used as the material.

Table 1 Material Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>7850 kg/m³</td>
</tr>
<tr>
<td>Young’s Modulus</td>
<td>2\times10^5 MPa</td>
</tr>
<tr>
<td>Poisson’s Ratio</td>
<td>0.3</td>
</tr>
<tr>
<td>Bulk Modulus</td>
<td>1.667\times10^{11} Pa</td>
</tr>
<tr>
<td>Tensile Yield Strength</td>
<td>250 MPa</td>
</tr>
<tr>
<td>Compressive Yield Strength</td>
<td>250 MPa</td>
</tr>
<tr>
<td>Tensile Ultimate Strength</td>
<td>460 MPa</td>
</tr>
</tbody>
</table>

The analysis includes the static structural analysis for the calculation of the stresses and these stresses are compared with the stresses for fatigue life.

Figure 1 Standard backhoe loader
III. METHOD OF ANALYSIS

As boundary conditions the part is loaded with a force of 3000 N and the fixed supports are provided as shown in figure 2. After application of force of 3000 N body is set to have volumetric meshing. Meshing is a collection of vertices, edges and faces, which defines the shape of tetrahedral mesh.

In tetrahedral meshing, aspect ratio, smoothness, fine and coarse item played important role for precise results. the ratio of the width to the height of an element or item is termed as aspect ratio. Figure 4 shows the meshing used for the part. It contains 131083 Nodes and 76076 Elements. The mesh is of type tetrahedral three dimensional unstructured with medium smoothness and aspect ratio.

IV. RESULTS

The analysis that was conducted yielded results for equivalent stresses and shows the fatigue life of the backhoe for the cyclic loading. The loading in both the cases is symmetrical and the cyclic loading is fully reversed. The results for the life are generated using Goodman criteria for fatigue failure.

The S-N curve Figure 7 shows the values of the alternating stress the material can carry before it fails against number of cycles.

The sensitivity graph is plotted from the load capacity of 0.5 to 1 and the response of the cyclic loading is shown.
CONCLUSION

The backhoe-loader bucket have been analyzed with the maximum loads and boundary conditions using FEM. FEA program ANSYS workbench has been used in the analysis. Analyses have been carried out for the maximum hydraulic cylinder forces. Symmetrical boundary conditions have been examined along with the fatigue life. The theoretical life cycle of any component in ANSYS is considered as 10^6 and in the present study the estimated life cycle is 0 for very small region. This can further be improved by changing the shape of the feature. It is also observed that the life of the component reduces considerably as it undergoes fatigue loading.

REFERENCES


[22] Monika s. agrawal, md razik “finite element analysis of truck chassis” international journal of engineering sciences & research Technology (ijesrt), ISSN: 2277-9655,