Application of Homotopy Analysis Method for Solving various types of Problems of Ordinary Differential Equations

V.P.Gohil
Assistant Professor, Department of Mathematics
Government Engineering College
Bhavnagar, India
vpgohil0909@gmail.com

Dr.G.A.Ranabhatt
Assistant Professor, Department of Mathematics
Government Engineering College
Bhavnagar, India

Abstract—In this paper, various types of linear, non-linear, homogeneous, non homogeneous problems of ordinary differential equations discussed. Also shown that homotopy analysis method applied successfully for solving non homogeneous and non linear equations.

Keywords- homotopy analysis method, ordinary differential equation, linear, homogeneous

I. INTRODUCTION

It is well-known that nonlinear ordinary differential equations (ODEs) and partial differential equations (PDEs) for boundary-value problems are much more difficult to solve than linear ODEs and PDEs, especially by means of analytic methods.

In recent years, this method (HAM) has been successfully employed to solve many types of non linear, homogeneous or non homogeneous, equations and systems of equations as well as problems in science and engineering ([4]). Very recently, Ahmad Bataineh ([21]) presented two modifications of HAM to solve linear and non linear ODEs. The HAM contains a certain auxiliary parameter h which provides us with a simple way to adjust and control the convergence region and rate of convergence of the series solution. Moreover, by means of the so-called h -curve, it is easy to determine the valid regions of h to gain a convergent series solution. Thus, through HAM, explicit analytic solutions of non linear problems are possible.

II. HOMOTOPY ANALYSIS METHOD

We consider the following differential equations,

\[N_i[S_i(x,t)] = 0, \ i = 1, 2, ..., n \]

where \(N_i \) are nonlinear operators that represents the whole equations, x and t are independent variables and \(S_i(x,t) \) are unknown functions respectively.

By means of generalizing the traditional homotopy method, Liao constructed the so-called zero-order deformation equations

\[(1 - q)L[\phi_i(x,t;q) - S_{i,0}(x,t)] = qh_iN_i[\phi_i(x,t; q)] \]

(1)

where \(q \in [0,1] \) is an embedding operators, \(h_i \) are nonzero auxiliary functions, \(L \) is an auxiliary linear operator, \(S_{i,0}(x,t) \) are initial guesses of \(S_i(x,t) \) and \(\phi_i(x,t; q) \) are unknown functions.

It is important to note that, one has great freedom to choose auxiliary objects such as \(h_i \) and \(L \) in HAM.

When \(q = 0 \) and \(q = 1 \) we get by (1),

\[\phi_i(x,t;0) = S_{i,0}(x,t) \text{and} \phi_i(x,t;1) = S_i(x,t) \]

Thus \(q \) increase from 0 to 1, the solutions \(\phi_i(x,t; q) \) varies from initial guesses \(S_{i,0}(x,t) \) to \(S_i(x,t) \).

Expanding \(\phi_i(x,t; q) \) in Taylor series with respect to \(q \),

\[\phi_i(x,t; q) = S_{i,0}(x,t) + \sum_{m=1}^{\infty} S_{i,m}(x,t) q^m \]

(2)

where \(S_{i,m}(x,t) = \frac{1}{m!} \frac{\partial^m \phi_i(x,t; q)}{\partial q^m} \bigg|_{q=0} \)

(3)

If the auxiliary linear operator, initial guesses, the auxiliary parameter \(h_i \) and auxiliary functions are properly chosen than the series equation (2) converges at \(q = 1 \).

\[\phi_i(x,t; 1) = S_{i,0}(x,t) + \sum_{m=1}^{\infty} S_{i,m}(x,t) \]

(4)

This must be one of solutions of the original nonlinear equations.

According to (3), the governing equations can be deduced from the zero-order deformation equations (1).

Define the vectors

\[\bar{S}_{i,m} = \{ S_{i,0}(x,t), S_{i,1}(x,t), S_{i,2}(x,t), ..., S_{i,m}(x,t) \} \]

Differentiating (1) \(m \) times with respect to the embedding parameter \(q \) and the setting \(q = 0 \) and finally dividing them by \(m! \).

We have the so-called \(m^{th} \) order deformation equations

\[L[S_{i,m}(x,t) - \chi_m S_{i,m-1}(x,t)] = h_i R_{i,m}(\bar{S}_{i,m-1}) \]

(5)

Where

\[R_{i,m}(\bar{S}_{i,m-1}) = \frac{1}{(m-1)!} \frac{\partial^{m-1} \chi_i[\phi_i(x,t;q)]}{\partial q^{m-1}} \bigg|_{q=0} \]

(6)
\[\chi_m = \begin{cases} 0, & m \leq 1 \\ 1, & m > 1 \end{cases} \]

III. Homogeneous Linear Ordinary Differential Equation

Consider homogeneous linear differential equation

\[u_{xx} + u_x + u = 0 \]

(7)

Subject to the initial condition

\[u(0) = 1, \quad u'(0) = 1 \]

(8)

To solve this system (7) to (8) by HAM, first we choose initial approximation

\[u_0(x) = 1 + x \]

And the linear operator

\[L(\phi(x; q)) = \frac{\partial \phi(x; q)}{\partial x} \]

With the property \(L(C) = 0 \) where \(C \) is integral constant.

We define system of non-linear operator as

\[N(\phi(x; q)) = \frac{\partial \phi(x; q)}{\partial x^2} + \frac{\partial \phi(x; q)}{\partial x} + \phi(x; q) \]

(9)

Using the above definition, we construct the zeroth-order deformation equations

\[(1 - q)[\phi(x; q) - S_0(x)] = qhN(\phi(x; q)) \]

(10)

Obviously, when \(q = 0 \) and \(q = 1 \) we get

\[\phi(x; 0) = S_0(x) = u_0(x) \quad \text{and} \quad \phi(x; 1) = u(x) \]

(11)

As \(q \) increase to 1, \(\phi \) varies from \(u_0(x) \) to \(u(x) \)

Expanding \(\phi(x; q) \) in Taylor series with respect to \(q \),

\[\phi(x; q) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \cdot q^m \]

(12)

Where

\[S_m(x) = \left[\frac{1}{m!} \frac{\partial^m \phi(x; q)}{\partial q^m} \right]_{q=0} \]

(13)

If the auxiliary linear operator, initial guesses, the auxiliary parameter \(h \) and auxiliary functions are properly chosen then the series equation (12) converges at \(q = 1 \).

\[\phi(x; 1) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \]

i.e. \(u(x) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \)

This must be one of solutions of the original non linear equations as proved by Liao Define the vectors

\[\overline{S}_n = (S_0(x), S_1(x), S_2(x), \ldots, S_n(x)) \]

(14)

We have the so-called \(m^{th} \) order deformation equations

\[L[S_m(x) - \chi_m \overline{S}_m(x)] = hR_m \overline{S}_{m-1} \]

(15)

Where

\[R_m \overline{S}_{m-1} = \left[\frac{1}{(m-1)!} \frac{\partial^{m-1} \phi(x; q)}{\partial q^{m-1}} \right]_{q=0} \]

(16)

i.e. \(R_m \overline{S}_{m-1} = (S_{m-1,1} + (S_{m-1,1})_x + S_{m-1} \)

(17)

\[S_m(x) = \chi_m \overline{S}_m(x) + h \int_0^1 R_m \overline{S}_{m-1} \, dx + c \]

(18)

Now we will calculate

\[S_1(x) = \chi_1 S_0(x) + h \int_0^1 R_1 \overline{S}_0 \, dx + c \]

(19)

Where

\[R_1 \overline{S}_0 = 2 + x \]

\[S_1(x) = h \left[2x + \frac{x^2}{2} \right] \]

(20)

Now The \(N^{th} \) order approximation can be expressed by

\[S(x) = S_0(x) + \sum_{m=1}^{N-1} S_m(x) \]

As \(N \to \infty \) we get \(S(x) \to u(x) \) with some appropriate assumption of \(h \)

IV. Non Homogeneous Linear Ordinary Differential Equation

Consider non homogeneous linear differential equation

\[u_{xx} + u_x + u + 2 = 0 \]

(21)

Subject to the initial condition
\[u(0) = 1, \quad u'(0) = 1 \]

To solve this system (21) to (22) by HAM, first we choose initial approximation

\[u_0(x) = 1 - x \]

And the linear operator

\[L(\phi(x; q)) = \frac{\partial \phi(x; q)}{\partial x} \]

With the property \(L(C) = 0 \) where \(C \) is integral constant.

We define system of non-linear operator as

\[N(\phi(x; q)) = \frac{\partial^2 \phi(x; q)}{\partial x^2} + \frac{\partial \phi(x; q)}{\partial x} + \phi(x; q) + 2 \]

Using the above definition, we construct the zeroth-order deformation equations

\[(1 - q)[\phi(x; q) - S_0(x)] = qhN(\phi(x; q)) \]

(23)

Obviously, when \(q = 0 \) and \(q = 1 \) we get

\[\phi(x; 0) = S_0(x) = u_0(x) \] and \(\phi(x; 1) = u(x) \)

(24)

As \(q \) increase to 1, \(\phi \) varies from \(u_0(x) \) to \(u(x) \)

Expanding \(\phi(x; q) \) in Taylor series with respect to \(q \),

\[\phi(x; q) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \cdot q^m \]

(25)

Where

\[S_m(x) = \left[\frac{1}{m!} \frac{\partial^m \phi(x; q)}{\partial q^m} \right]_{q=0} \]

(26)

If the auxiliary linear operator, initial guesses, the auxiliary parameter \(h \) and auxiliary functions are properly chosen than the series equation (26) converges at \(q = 1 \).

\[\phi(x; 1) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \]

i.e. \(u(x) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \)

(27)

This must be one of solutions of the original non-linear equations as proved by Liao Define the vectors

\[\overrightarrow{S}_n = \{ S_0(x), S_1(x), S_2(x), \ldots, S_n(x) \} \]

(28)

We have the so-called \(m^{th} \) order deformation equations

\[L\left[S_m(x) - \chi_m S'_m(x) \right] = h R_m \overrightarrow{S}_{m-1} \]

(29)

Where

\[R_m \overrightarrow{S}_{m-1} = \left[\frac{1}{(m-1)!} \frac{\partial^{m-1} \phi(x; q)}{\partial q^{m-1}} \right]_{q=0} \]

i.e. \(R_m \overrightarrow{S}_{m-1} = \left(S_{m-1} \right)_x + \left(S_{m-1} \right)_x + S_{m-1} + 2 \)

(30)

\[S_m(x) = \chi_m S_{m-1}(x) + h \int_0^1 R_m \left(\overrightarrow{S}_{m-1} \right) \, dx + c \]

(31)

Now we will calculate

\[S_1(x) = \chi_1 S_0(x) + h \int_0^1 R_1 \left(\overrightarrow{S}_0 \right) \, dx + c \]

(32)

Where

\[R_1 \left(\overrightarrow{S}_0 \right) = -x \]

So

\[S_1(x) = -h \left[\frac{x^2}{2} \right] \]

Now The \(N^{th} \) order approximation can be expressed by

\[S(x) = S_0(x) + \sum_{m=1}^{N-1} S_m(x) \]

(33)

As \(N \to \infty \) we get \(S(x) \to u(x) \) with some appropriate assumption of \(h \)

V. NON HOMOGENEOUS NON LINEAR ORDINARY DIFFERENTIAL EQUATION

Consider non homogeneous non linear differential equation

\[u_{xx} + u \cdot u_x + u + 2 = 0 \]

(34)

Subject to the initial condition

\[u(0) = 2, \quad u'(0) = -1 \]

(35)

To solve this system (35) to (36) by HAM, first we choose initial approximation

\[u_0(x) = 2 - x \]

And the linear operator

\[L\left(\phi(x; q) \right) = \frac{\partial \phi(x; q)}{\partial x} \]
With the property \(L(C) = 0 \) where \(C \) is integral constant.

We define system of non-linear operator as
\[
N(\phi(x ; q)) = \frac{\partial^2 \phi(x ; q)}{\partial x^2} + \phi(x ; q) \frac{\partial \phi(x ; q)}{\partial x} + \phi(x ; q)
\]
\]

Using the above definition, we construct the zeroth-order deformation equations
\[
(1-q)[\phi(x ; q) - S_0(x)] = qhN(\phi(x ; q))
\]

Obviously, when \(q = 0 \) and \(q = 1 \) we get
\[
\phi(x ; 0) = S_0(x) = u_0(x) \quad \text{and} \quad \phi(x ; 1) = u(x)
\]

As \(q \) increases from 0 to 1, \(\phi \) varies from \(u_0(x) \) to \(u(x) \)

Expanding \(\phi(x ; q) \) in Taylor series with respect to \(q \),
\[
\phi(x ; q) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \cdot q^m
\]

Where
\[
S_m(x) = \left[\frac{1}{m!} \frac{\partial^m \phi(x ; q)}{\partial q^m} \right]_{q=0}
\]

If the auxiliary linear operator, initial guesses, the auxiliary parameter \(h \) and auxiliary functions are properly chosen then the series equation (40) converges at \(q = 1 \). \[
\phi(x ; 1) = S_0(x) + \sum_{m=1}^{\infty} S_m(x)
\]
i.e. \(u(x) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \)

This must be one of solutions of the original non-linear equations as proved by Liao Define the vectors \(S_n = (S_0(x), S_1(x), S_2(x), S_n(x)) \)

We have the so-called \(m^{th} \) order deformation equations
\[
L[S_m(x) - \chi_m S_m(x)] = hR_m S_{m-1}
\]

Where
\[
R_m S_{m-1} = \left[\frac{1}{(m-1)!} \frac{\partial^{m-1} \phi(x ; q)}{\partial q^{m-1}} \right]_{q=0}
\]
i.e. \(R_m S_{m-1} = (S_{m-1})_{xx} + S_{m-1} (S_{m-1})_x + S_{m-1} + 2
\]

\[
S_m(x) = \chi_m S_{m-1}(x) + h \int_0^x R_m S_{m-1} \, dx + c
\]

Now we will calculate
\[
S_1(x) = \chi_1 S_0(x) + h \int_0^x R_1 S_0 \, dx + c
\]

Where
\[
R_1 S_0 = 1 - x
\]

Now the \(N^{th} \) order approximation can be expressed by
\[
S(x) = S_0(x) + \sum_{m=1}^{N} S_m(x)
\]

As \(N \to \infty \) we get \(S(x) \to u(x) \) with some appropriate assumption of \(h \)

VI. **HOMOGENEOUS NON LINEAR ORDINARY DIFFERENTIAL EQUATION**

Consider homogeneous non linear differential equation
\[
u_{xx} + u \cdot u_x + u = 0
\]

Subject to the initial condition
\[
u(0) = 2, \quad \nu'(0) = 1
\]

To solve this system (49) to (50) by HAM, first we choose initial approximation
\[
u_0(x) = 2 + x
\]

And the linear operator
\[
L(\phi(x ; q)) = \frac{\partial \phi(x ; q)}{\partial x}
\]

With the property \(L(C) = 0 \) where \(C \) is integral constant.

We define system of non-linear operator as
\[
N(\phi(x ; q)) = \frac{\partial^2 \phi(x ; q)}{\partial x^2} + \phi(x ; q) \frac{\partial \phi(x ; q)}{\partial x} + \phi(x ; q)
\]

Using the above definition, we construct the zeroth-order deformation equations
\[
(1-q)[\phi(x ; q) - S_0(x)] = qhN(\phi(x ; q))
\]
Obviously, when \(q = 0 \) and \(q = 1 \) we get
\[
\phi(x ; 0) = S_0(x) = u_0(x) \quad \text{and} \quad \phi(x ; 1) = u(x)
\]
(53)
As \(q \) increase to 1, \(\phi \) varies from \(u_0(x) \) to \(u(x) \).
Expanding \(\phi(x ; q) \) in Taylor series with respect to \(q \),
\[
\phi(x ; q) = S_0(x) + \sum_{m=1}^{\infty} S_m(x) \cdot q^m
\]
(54)
Where
\[
S_m(x) = \left[\frac{1}{m!} \frac{\partial^m \phi(x ; q)}{\partial q^m} \right]_{q=0}
\]
(55)
If the auxiliary linear operator, initial guesses, the auxiliary parameter \(h \) and auxiliary functions are properly chosen than the series equation (54) converges at \(q = 1 \).
\[
\phi(x ; 1) = S_0(x) + \sum_{m=1}^{\infty} S_m(x)
\]
(56)
This must be one of solutions of the original non linear equations as proved by Liao. Define the vectors
\[
\mathbf{S}_n = (S_0(x), S_1(x), S_2(x), \ldots, S_n(x))
\]
We have the so-called \(m^{th} \) order deformation equations
\[
L[S_m(x) - \chi_m S_m(x)] = hR_m S_{m-1}
\]
(57)
Where
\[
R_m S_{m-1} = \left[\frac{1}{(m-1)!} \frac{\partial^{m-1} \phi(x ; q)}{\partial q^{m-1}} \right]_{q=0}
\]
(58)
\[
\text{i.e.} \quad R_m \mathbf{S}_{m-1} = (S_{m-1})_{x x} + S_{m-1} (S_{m-1})_x + S_{m-1}
\]
(59)
\[
S_m(x) = \chi_m S_{m-1}(x) + h \int_0^x R_m (S_{m-1}) \ dx + c
\]
(60)
Now we will calculate
\[
S_1(x) = \chi_1 S_0(x) + h \int_0^x R_1 (S_0) \ dx + c
\]
(61)
\[
R_1 \left(S_0 \right) = 3 + x
\]
\[
S_1(x) = -h \left[\frac{3x + x^2}{2} \right]
\]
Now The \(N^{th} \) order approximation can be expressed by
\[
S(x) = S_0(x) + \sum_{m=1}^{N} S_m(x)
\]
(62)
As \(N \to \infty \) we get \(S(x) \to u(x) \) with some appropriate assumption of \(h \).

VII CONCLUSION
Various types of homogeneous, non homogeneous, linear, non linear ordinary differential equation can be solved easily by using homotopy analysis method.

REFERENCES