Design of three Phase Induction Motor using Mat Lab Programming

Somashekar.B
Asst. Professor, Dr. T. Thimmaiah Institute of Technology, KGF
Soma0103@yahoo.co.in

Abstract:- The basic design of induction motors has not changed in the last 40-50 years, with latest and good insulation materials, design is based on computer optimization techniques and using automated manufacturing methods have resulted in motors of smaller physical size and cost per kW is less. The standards set by International of physical dimensions and frame sizes means that motors from most manufacturers are physically interchangeable and they have similar performance characteristics.

But to design the calculation manually for the induction motor is time consuming and very difficult to get the accurate value. For construction of induction motor the values must be accurate, so by using the mat lab programming the calculation becomes very simple and the time taken will be less with accurate values.

Keywords:- induction motor, mat lab

NOMENCLATURE:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_n</td>
<td>No of phases</td>
</tr>
<tr>
<td>P</td>
<td>Power in KW</td>
</tr>
<tr>
<td>v</td>
<td>Voltage in volts</td>
</tr>
<tr>
<td>f</td>
<td>Frequency in Hz</td>
</tr>
<tr>
<td>p_0</td>
<td>No of poles</td>
</tr>
<tr>
<td>B_av</td>
<td>Flux density in wb/m^2</td>
</tr>
<tr>
<td>q</td>
<td>Ampere conductor in A/m</td>
</tr>
<tr>
<td>C_o</td>
<td>Output co-efficient</td>
</tr>
<tr>
<td>D</td>
<td>Diameter of core in meters</td>
</tr>
<tr>
<td>L_i</td>
<td>Net length of the core in meters</td>
</tr>
<tr>
<td>T_p</td>
<td>Turns per phase</td>
</tr>
<tr>
<td>q_s</td>
<td>Stator slots per phase</td>
</tr>
<tr>
<td>S_s</td>
<td>Stator slots</td>
</tr>
<tr>
<td>K_ws</td>
<td>Stator winding factor</td>
</tr>
<tr>
<td>I_s</td>
<td>Stator current per phase in amps</td>
</tr>
<tr>
<td>A</td>
<td>Area of stator in meters</td>
</tr>
<tr>
<td>W_t</td>
<td>Width of stator teeth in meters</td>
</tr>
<tr>
<td>L_lts</td>
<td>Length of mean turn in meters</td>
</tr>
<tr>
<td>B_mat</td>
<td>Flux density in stator teeth wb/m^2</td>
</tr>
<tr>
<td>A_sc</td>
<td>Area of stator core in M^2</td>
</tr>
<tr>
<td>D_cs</td>
<td>Depth of stator core in meters</td>
</tr>
<tr>
<td>B_cs</td>
<td>Flux density in stator core wb/m^2</td>
</tr>
<tr>
<td>D_s</td>
<td>Depth of slot in meters</td>
</tr>
<tr>
<td>L_g</td>
<td>Length of air gap in meters of rotor</td>
</tr>
<tr>
<td>D_r</td>
<td>Diameter of the rotor in meters</td>
</tr>
<tr>
<td>Y_sr</td>
<td>Rotor slot pitch</td>
</tr>
<tr>
<td>I_b</td>
<td>Rotor bar current in amps</td>
</tr>
<tr>
<td>A_b</td>
<td>Area of rotor bar in m^2</td>
</tr>
<tr>
<td>R_b</td>
<td>Resistance of each bar in ohms</td>
</tr>
<tr>
<td>T_c</td>
<td>Total copper losses in bars in watts</td>
</tr>
<tr>
<td>I_e</td>
<td>End ring current in amps</td>
</tr>
<tr>
<td>A_e</td>
<td>Area of end ring in m^2</td>
</tr>
<tr>
<td>D_oer</td>
<td>Outer diameter of end ring in meters</td>
</tr>
<tr>
<td>D_ier</td>
<td>Inner diameter of end ring in meters</td>
</tr>
<tr>
<td>R_e</td>
<td>Resistance of end ring in ohms</td>
</tr>
<tr>
<td>C_l</td>
<td>Copper losses in end ring in watts</td>
</tr>
<tr>
<td>T_cl</td>
<td>Total rotor copper losses in watts</td>
</tr>
<tr>
<td>S</td>
<td>Slip of rotor</td>
</tr>
<tr>
<td>D_i</td>
<td>Inner diameter of rotor</td>
</tr>
<tr>
<td>K_ws</td>
<td>Gap concentration factor for stator slots</td>
</tr>
<tr>
<td>K_re</td>
<td>Gap concentration factor for rotor slots</td>
</tr>
<tr>
<td>A_g</td>
<td>Area of air gap in m^2</td>
</tr>
<tr>
<td>L_ge</td>
<td>Effective length of air gap in meters</td>
</tr>
<tr>
<td>A_r</td>
<td>Mmf of air gap in amps</td>
</tr>
<tr>
<td>A_ao</td>
<td>Area of teeth per pole in m^2</td>
</tr>
<tr>
<td>MMFST</td>
<td>Mmf required for stator teeth in amps</td>
</tr>
<tr>
<td>A_sc</td>
<td>Area of stator core in m^2</td>
</tr>
<tr>
<td>L_gcs</td>
<td>Length of magnetic path through stator core in meters</td>
</tr>
<tr>
<td>A_bc</td>
<td>MMF required for stator core in amps</td>
</tr>
<tr>
<td>A_ao</td>
<td>Area of teeth per pole in m^2</td>
</tr>
<tr>
<td>B_t</td>
<td>Flux density in rotor teeth in wb/m^2</td>
</tr>
<tr>
<td>A_r</td>
<td>Mmf required for rotor teeth in amps</td>
</tr>
<tr>
<td>A_sc</td>
<td>Rotor core area in m^2</td>
</tr>
<tr>
<td>L_rcr</td>
<td>Length of flux path in rotor core in meters</td>
</tr>
<tr>
<td>A_mc</td>
<td>MMF for rotor core in amps</td>
</tr>
<tr>
<td>I_m</td>
<td>Magnetizing current per phase in amps</td>
</tr>
<tr>
<td>W_s</td>
<td>Weight of stator teeth in kg</td>
</tr>
<tr>
<td>I_t</td>
<td>Iron loss in stator teeth in watts</td>
</tr>
<tr>
<td>W_c</td>
<td>Weight of stator core in kg</td>
</tr>
<tr>
<td>I_sc</td>
<td>Iron loss in stator core in watts</td>
</tr>
<tr>
<td>I_l</td>
<td>Total iron loss in watts</td>
</tr>
<tr>
<td>I_t</td>
<td>Total actual iron losses in watts</td>
</tr>
<tr>
<td>F_w</td>
<td>Friction and windage loss in watts</td>
</tr>
<tr>
<td>T_no</td>
<td>Total no load losses in watts</td>
</tr>
<tr>
<td>I_n</td>
<td>No load current per phase in amps</td>
</tr>
<tr>
<td>I_l</td>
<td>No load current in amps</td>
</tr>
<tr>
<td>P_n</td>
<td>No load power factor</td>
</tr>
<tr>
<td>Eff</td>
<td>Efficiency at full load</td>
</tr>
<tr>
<td>Rs</td>
<td>Resistance of stator winding in ohms</td>
</tr>
</tbody>
</table>

Introduction:

As we know that for many industrial and mining applications, 3-phase induction motor plays a major role.
Induction motor can be operated directly or by using a variable drives. In developed and many industrialized countries the electrical energy is converted in mechanical energy by using the induction motors. The application of these motors are used in all stage of manufacturing and processing and also it is used in commercial and domestic applications. It is very popular, when we consider the simple design, low cost, high efficiency [8].

A poly phase induction motor consists of two major parts, the stator and rotor. The construction of each one is basically a laminated core provided with slots for winding. When one of the winding is excited with an ac voltage a rotating field is set up.

To design the 3 phase induction motor of the stator, rotor, end rings, and main parts of the induction motor is very difficult by using the manual calculation or software. The design of the induction motors is been well established, there are some areas which require special care. The manual design is been a lengthy calculation and if any change in the parameters needs to be recalculated. This results in the time and effort is required by the designer to do the calculations accurately [8].

As an example, after doing the calculations of an induction motor design it is observed that performance of the machine is not satisfactory and dimension of the machine is uneconomical. To solve this, the designer has to change some design parameters like electric loading, magnetic loading, insulation thickness etc. Hence iterative calculation of the entire design procedure is required to achieve a satisfactory result. The approximations assumed in the manual calculations also lead to inaccurate results. As they are many software’s to design as computer aided design excel, so that the essential suitable program is required for the optimum design. The design features of an induction motor are classified as constructional wise and performance wise and the results are tabulated. The design software which is been used in manufacturing of the motors are very expensive and owned by companies who cannot disclose the details of it. So the demand and requirement of design software for educational purpose is on the rise [8].

So, by using the mat lab programming we can get the exact values of the design for the given specification of the induction motor accurately with less time.

Design of induction motor:

The design lies in suitable and economic distribution of iron, copper, insulation and air gap in the machine. Basically the design of electric motor involves the study of the voltages induced in the windings, the load currents and terminal voltages under different loading conditions, the power received or given out by the machine, the speed at which the machine is running under different loading conditions and frequency and the torque produced under different loading conditions. The interrelations of the above quantities decide the suitability of a machine for a particular application. After designing the size and dimensions of the machine parts, the appropriate magnetic and electric circuits must be calculated [8].

Bureau of Indian Standards:

The Bureau of Indian Standards (BIS) has prepared standards for various types of electrical machines to cover the requirements of the consumers. Standardization helps in economy and in the comparison of performance of motors from different manufacturers. The customers can mention the additional specifications apart from the standard specifications to which the equipment must be built and the degree of expected performance accuracy. The standards that summarize the specifications of induction motors are IS 325, IS1231, IS4800 and IS6160 [8].

Mat lab:

It is a high-level language and interactive environment used by engineers and scientists in industry and in education. We can use this tool for collaborating in many disciplines such as control systems, communication systems, signal system, image processing, programming and finance.

It can be used in projects such as to build power grids, control algorithms for high speed vehicles, weather monitoring to visualize the track and intensity of hurricanes, and running simulations to pinpoint optimal dosing for antibiotics. So, it is powerful tool for any type of computation tasks.

Design of induction motor using Mat lab programming:

```matlab
% DESIGN OF THREE PHASE INDUCTION MOTOR - MATLAB 
clc
clear all
% input data.
fprintf('n
******************************************************************************
******************************************************************************

INPUT THE SPECIATIONS OF THE INDUCTION MOTOR\n');
```


\begin{verbatim}
% printf(\n
..\n
ph=input(\nno of phases=\n');
p=input(\n'power in KW=\n');
v=input(\n'velaction in volts=\n');
f=input(\n'frequency on Hz=\n');
po=input(\n'no of poles=\n');
Bav=input(\n'flux in Wb/m^2=\n');
q=input(\n'ac in a/m=\n');
Kw=input(\n'winding factor=\n');
pf=input(\n'power factor=\n');
% turns per phase
Tp=v/(4.44*f*flux*Kw);
% turns per phase

% stator design
L=1.18*D;

% to find D and L
Do=D+2*dss+2*dcs;
dss=h+lip+wedge;

% to find pole pitch
pp=(pi*D)/po;
iron=input(\n'iron factor=\n');

% Li- net length
Li=(L-2*0.01)*iron;

% to find D and L
D=abs((Q/(Co+ns))/1.18)*(1/3);
L=1.18*D;

% to find speed
Ns=(2*f)/po;

% to find speed
pspeed=(pi*D)*ns;

% to find speed
Li=(L-2*D);

% to find no of stator slots
qs=input(\n'no of stator slots per phase=\n');

% to find no of stator slots
ss=ph/qs;
yss=(pi*D)/ss;
sp=ss/ph;
sc=6*Tp;
zss=ss/ss;
cs=ss/ph;

% to find no of stator slots

% to find no of stator slots
evreno=input(\n'\n
% to find no of stator slots
if cs1==evreno
alpha=(1/cs)*180;

kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end

% conductor size
Is=(p*1e3)/(3*v*pf);
IsL=sqrt(3)*Is;

% conductor size
Bmst=flux/((ss/p)*wts*Li);
B=input(\n'bav=\n');

% conductor size
As=S/sf;
sf=input(\n'nspace factor for the slots=\n');

% conductor size
S=zss*as;
density=Is/as;

% conductor size
kp=cos((alpha/2)*(pi/180));
kd=(sin((qs*alpha/2)*(pi/180)))/(qs*(sin((qs*alpha/4)*(pi/180)));

end
\end{verbatim}
fprintf(\n THE FLUX DENSITY IN STATOR TEETH OF
 THE INDUCTION MOTOR=\%.4f WB \n',Bmst);
fprintf(\n THE DEPTH OF STATOR CORE OF THE
 INDUCTION MOTOR=\%.4f METERS \n',dcs);
fprintf(\n THE OUTER DIAMETER OF STATOR
 LAMINATIONS OF THE INDUCTION MOTOR=\%.4f
 METERS \n',Do);
fprintf(\n
 % Rotor design
 Lg=0.2*2*sqrt(D*L);
fprintf(\n THE LENGTH OF AIR GAP OF ROTOR OF
 THE INDUCTION MOTOR=\%.4f METERS \n',Lg);
Lg1=input(\n if Lg is greater than 0.3 it must be taken as
 0.0003 METERS = \n');
D=D-2*Lg1;
fprintf(\n
 Sr=input(\n \n');
fprintf(\n THE TOTAL COPPER LOSSES IN BARS OF
 THE FLUX DENSITY IN ROTOR TEETH OF
 THE RESISTANCE OF EACH BAR OF THE
 THE DIAMETER OF ROTOR OF THE
 THE ROTOR BAR CURRENT OF THE
 THE WIDTH OF THE ROTOR TEETH AT
 THE ROOT OF THE INDUCTION MOTOR=\%.4f
 METERS \n',wt);
fprintf(\n THE RESISTANCE OF EACH BAR OF THE
 INDUCTION MOTOR=\%.12f OHMS \n',rb);
fprintf(\n THE FLUX DENSITY IN ROTOR TEETH OF
 THE INDUCTION MOTOR=\%.4f WB \n',fluxdensity);
fprintf(\n THE TOTAL COPPER LOSSES IN BARS OF
 THE INDUCTION MOTOR=\%.4f WATTS \n',Tclb);
fprintf(\n
 % design of end rings .
 Ibe=(Sr*Ib)/(pi*po);
currentdensityend=input(\n \n');
ae=Ibe/currentdensityend;
ae1=ae/1e6;
fprintf(\n THE END RING OF THE INDUCTION MOTOR=\%.4f
 METERS \n',Do);
fprintf(\n
 Doer=(Dr^2*wsr);
fprintf(\n THE DEPTH OF RING IN METERS = \n');
Dier=Doer-2*de;
Dier-(Doer+Dier)/2;
resistivity=input(\n \n');
re=(resistivity*pi*De)/ae;
CL=2*Ib^2*re*1e3;
Tcl=Tclb+CL;
fprintf(\n THE OUTPUT OF THE END RING OF INDUCTION
 MOTOR\n');
fprintf(\n
 % rotor core
 dcr=dc;
 Bcr=input(\n \n');
fprintf(\n THE END RING CURRENT OF THE
 INDUCTION MOTOR=\%.4f AMPS \n',Ibe);
fprintf(\n THE AREA OF END RING OF THE
 INDUCTION MOTOR=\%.4f SQUARE MILL-METERS
 \n',ae1);
fprintf(\n THE RESISTANCE OF END RING OF THE
 INDUCTION MOTOR=\%.12f OHMS \n',re);
fprintf(\n THE TOTAL ROTOR COPPER LOSSES
 OF THE INDUCTION MOTOR=\%.4f WATTS \n',Tcl);
fprintf(\n THE SLIP OF THE INDUCTION MOTOR=\%.4f
 PERCENTAGE \n',slip);
fprintf(\n THE INNER DIAMETER OF ROTOR
 LAMINATION OF THE INDUCTION MOTOR=\%.4f
 METERS \n',Di);
fprintf(\n
 % no load current
 % magnetizing current of stator
 slotopening=input(\n \n');
gaplength=input(\n \n');
fprintf(\n THE SLOT OPENING GAPLENGTH;
 Kcs=input(\n \n');
wo=input(\n \n');
Kgs=(yss-Kcs*wo);
fprintf(\n THE Rotor slot opening= \n');
gaplengthrorotor=input(\n \n');
fprintf(\n Rotor gap opening= \n');
Kgsr=ysr*(ysr-Kcsr*wo1);
Kgs=Kgs*Kgsr;
Kgd=input('an gap concentration factor \n');
Kg=Kgs*Kgd;
Ag=(pi*D)/4*L;
Bg=1.36*Bav;
Lge=Kg*gaplength;
Atg=80000*Bg*Kg*Lg1;

%stator teeth
Atp=(ss/80)*wts*Li;
Bts=input('an flux density of stator teeth=\n');
Bts=1.36*Bts;

fprintf('THE flux density of the stator teeth OF THE INDUCTION MOTOR=%.4f WB/M2 \n',Bts);
ats=input('an flux density corresponding to Btss in A/m= \n');

mmfst=ats*dss;
%stator core
Acs=Li*dcs;
Bcs=input('an flux density of stator core in wb/m2= \n');
Lcs=pi*(D+2*dss+ds)/3*po;

atsc=input('an amper turns of stator in A/m= \n');
Atdc=atsc*Lcs;

%rotor teet
wts=pi*(D+r*dsr)/Sr-\n;
Atr=(Sr/80)*wts*Li;
Btr=input('an flux density at 1/3 ht in wb/m2= \n');
Btr=1.36*Btr;

atr=input('an flux density in A/m= \n');

Atr=atr*dsr;
%rotor core
Atrc=Lt*dr;
Brl=input('an flux density of rotor core= \n');

atsr=input('an flux density in A/M= \n');

lcr=pi*(D-2*dsr-2*dr)/3*po;
Atrc=atr*lcr;
At=Atg+mmfst+Atdc+Atr+Atrc;
Im=(0.427*po*At1)/(kws*TP);

%fprintf('n

%loss component

Vst=input('an volume of stator teeth in METER CUBE(M3)= \n');
%iron losses in stator teeth
Wst=Vst*7.6*1e3;
Bst=(pi/2)*Bts;

fprintf('THE FLUX DENSITY CORRESPONDING TO STATOR TEETH OF THE INDUCTION MOTOR=%.4f WB/M2 \n',Bst);
Lkg=input('an corresponding to Bst loss per kg in w= \n');
Ilst=Lkg*Wst;
%iron loss in stator core
Vsc=input('an volume of stator core in METER CUBE(M3)= \n');
wsc=Vst*7.6*1e3;
Bsc=Bcs;

fprintf('THE FLUX DENSITY CORRESPONDING TO STATOR CORE OF THE INDUCTION MOTOR=%.4f WB/M2 \n',Bsc);
Ilc=input('an iron loss per kg corresponding to flux density= \n');
Ilsc=Ilc*wsc;
%total iron losses
Il=Ilst+Ilsc;

Il=2*I1;
%Friction and windage losses
fwlp=input('an percentage of friction and windage losses= \n');
fwl=(fwlp/100)*p*1e3;
Tnl=Itl+fwl;
%load current
IL=Tnl/(3*p);

IL=IL*2+Ilm*2;
%power factor
pfo=IL*1m;

phaseangle=acos(pfo)*(180/pi);
%losses and efficieny

rs=((resistivity*TP*Lmts)/As);
CLs=3*IL^2*rs;
Ip=CL+Itl+fw+CLs+(p*1e3);
eff1=((p*1e3)/Ip)*100;
% output of the following design

fprintf('n

%THE MMF REQUIRED FOR AIR GAP OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE MMF REQUIRED FOR STATOR TEETH OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE MMF REQUIRED FOR STATOR CORE OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE MMF REQUIRED FOR ROTOR TEETH OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE MMF REQUIRED FOR ROTOR CORE OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE TOTAL MMF OF THE INDUCTION MOTOR=\n');

fprintf('n
%THE TOTAL MAGNETIZING CURRENT PER PHASE OF THE INDUCTION MOTOR=\n');
CONCLUSION:

The demand of motor design program for educational purposes was the motivation behind this study. The scope of the project is featuring mat lab programming for the design of squirrel cage induction motor in its basic form useful to designing and in teaching field. The developed mat lab programming provides good support for the students who are learning the design process as a part of their curriculum. The design procedure and with the different parameter modifications they arrive at the optimized solution. This helps them to analyze the effects of different parameter variations easily and learn the design of induction motor effectively. The present work has concentrated on the design of standard squirrel cage induction motor which can be extended for designing energy efficient machines as a future scope.

APPENDIX:

1. Air gap flux density (Bg) - 0.3 to 0.6 wb/m².
2. Ampere conductor (ac/q)-5000 to 45000ac/m.
3. Efficiency for 4 pole squirrel cage induction motor - 72% to 91%.
4. Efficiency for 8 pole squirrel cage induction motor - 75% to 90%.
5. Power factor for 4 pole - 0.75 to 0.92.
6. Power factor for 4 pole - 0.66 to 0.89.
7. Peripheral speed - 60m/s to 75m/s.
8. Ventilating ducts- 8 to 10mm.
9. Insulation materials - classes E, B &F.
10. Current density in stator conductor - 3.5 to 6a/mm²
11. Slot pitch for open type of slots - 15 to 25mm.
12. Mean flux density in tooth lines - 1.3 to 1.7 wb/m².
13. Maximum flux density in stator teeth - 1.7 wb/m².
14. Flux density in stator core - 1.2 to 1.4 wb/m².
15. Current density in rotor bars - 4 to 7 A/mm².
16. Current density in end rings - 5A/mm².
17. Flux density in rotor core - = stator core (Higher than stator value).
18. Friction and windage losses - 1.0 to 5.5 %.
19. Resistivity of copper - 0.021 ohm/m at 75°C.
20. Iron factor- 0.9.
21. Space factor for the slots - 0.4.
23. W₁ for air gap in rotor- 1.5.

REFERENCES:

AUTHORS

SOMASHEKAR, B received B.E degree (Electrical & Electronics Engineering) in Golden Valley Institute of Technology, K.G.F in 1998 under Bangalore University and M. Tech (VLSI & Embedded Systems) from BMS, VTU in 2010.

He is currently an Assistant Professor in the Department of Electrical Engineering, Dr. TTIT, and KGF. His research areas are Power Systems, VLSI and Power Electronics.