Modelling of Neural Network based Speed Controller for Vector Controlled Induction Motor Drive

Sangeeta Manikpuri (M-Tech Scholar)
Electrical and Electronics Engg. Department
Dr. C V Raman Institute of Science and Technology Kota
Bilaspur, India
Manikpuri.sangeeta@gmail.com

Dr. Dharmendra Kumar Singh (Head of the Department)
Electrical and Electronics Engg. Department
Dr. C V Raman Institute of Science and Technology Kota
Bilaspur, India
Dmsingh2001@rediffmail.com

Miss Durga Sharma (Head of the Department)
Electrical Engg. Department
Dr. C V Raman Institute of Science and Technology Kota
Bilaspur, India
drgshrmm@gmail.com

Abstract—This project work start with the development of simulation model of rotor magnetic field oriented vector control system based on MATLAB software. This paper proposes the development of a Neural Network controller in place of PI controller commonly used in the vector control structure for efficient speed control and smaller settling time. It is expected that the proposed modified vector control structure based on Neural Network controller smoothen out the ripples in the motor torque and stator current as fine as will provide best speed regulation with smaller settling time requirement.

Keywords-Induction motor; neural network; PI controller; Speed control; Vector control.

I. INTRODUCTION

Induction motors are the most commonly used electric drives in the industries due to its robustness, less maintenance, and low cost. The electric drives must possess good dynamic response to respond to very small changes in load or in the reference speeds. By using field oriented control of induction motors this requirement is achieved easily. [1] The induction motor is run like a separately excited DC motor using the field oriented control. The advantages of the AC drives over DC drives are unchanged. Thus a drive system with a high-quality dynamic response is developed. [2]

Vector control Technology is regard as major control method on high performance induction motor speed control system. [2] In conventional field oriented control, a PI controller is provided for controlling the speed of the induction motor drive. The use of PI controller induces many problems like high overshoot, oscillation of speed and torque due to sudden changes in load and external disturbances. This behavior of the controller causes deterioration of drive performance. To overcome this disadvantage an intelligent controller based on Neural Network is proposed in the place of the conventional PI controller. [3]

II. ROTOR FLUX ORIENTED CONTROL OF INDUCTION MOTOR DRIVE (VECTOR CONTROL)

The indirect vector control method is essentially same as the direct vector control except the unit vector is generated in an indirect manner using the measured rotor speed or and the slip speed ωs. The field orientation was made according to the rotor flux vector. [6]

The rotor flux magnitude is obtained using a flux observer, but the frequency of the rotor field is neither computed nor estimated but is imposed depending on the load torque value i.e. the slip frequency, and then integrated to obtain the imposed rotor flux position (angle λr). A field weakening system is used to control the speed of the motor when the speed rises above the nominal value. The mathematical model of induction motor is given by-

\[\theta_r = \int \omega_e + \int (\omega_r + \omega_s t) = \theta_r + \delta \theta \] \hspace{1cm} (1)

The rotor circuit equation is given as:

\[\frac{d\psi_r}{dt} + \frac{R}{L_r}\psi_r - \frac{L_m}{L_r}i_{ds} = 0 \] \hspace{1cm} (2)

\[\frac{d\psi_{qr}}{dt} + \frac{R}{L_r}\psi_{qr} - \frac{L_m}{L_r}i_{qs} - \omega_s \psi_{qr} = 0 \] \hspace{1cm} (3)

For decoupling control, the stator current component of current ids should be aligned on the de axis, and the torque component of current iqs should be on the qe axis, that leads to ψdr = 0 and ψqs = ψr, then:

\[\frac{L_m \frac{d\psi_r}{dt} + \psi_r}{R_r} = L_m i_{ds} \] \hspace{1cm} (4)

As well, the slip frequency can be calculated as:

\[\omega_s = \frac{L_m R_r}{\psi_r} i_{qs} \] \hspace{1cm} (5)

It is found that the ideal decoupling can be achieved if the above slip angular speed command is used for making the field orientation. The control rotor flux \(\psi_r \) and \(\frac{d\psi_r}{dt} = 0 \) can be substituted in equation (2), so that rotor flux set as

\[\psi_r = L_m i_{ds} \] \hspace{1cm} (6)

The electromagnetic torque developed in the motor is given by-

\[T_e = \frac{3 P L_m \psi_r i_{qs}}{2 L_r} \] \hspace{1cm} (7)
The vector control or field oriented control (FOC) of ac machines makes it possible to control ac motor in a manner similar to the control of a separately excited dc motor. In ac machines, the torque is developed by the interaction of current and flux. In induction motor the power is given to the stator only, the current responsible for flux production, and the current responsible for torque production are not easily separate.[3] The main criteria of vector control is to separate the components of stator current responsible for flux production, and the also the torque. The vector control in an ac machines is obtained by controlling the magnitude, frequency, and stator current phase, by inverter control scheme.[8] As, the control of the motor is obtained by controlling both magnitude and phase angle of the current, this control method is given a name i.e; vector control. In order to achieve independent control of flux and torque in induction machines, the stator (or rotor) flux linkages phasor is maintained constant in its magnitude and its phase is stationary with respect to current phasor.[7]

The vector control structure can be classified in: 1. direct control scheme, when the flux position orientation is determined with the flux sensors and 2. indirect control scheme, then the flux position orientation is estimated using the measured rotor speed. For indirect vector control, the induction machine will be represented in the synchronously rotating reference frame. And even For indirect vector control the control equations can be derived with the help of d-q model of the motor in synchronous reference frame.[4]

The block diagram of the rotor flux oriented control a VSI induction machine drive is presented in Fig. 1.[7]

Generally, a closed loop vector control scheme results in a complex control structure as it consists of the following components:

1. PI controller for motor flux and torque,
2. Current and/or voltage decoupling network,
3. Complex coordinate transformation,
4. Two axis to three axis transformation,
5. Voltage or current modulator ,
6. Flux and torque estimator,
7. PI speed controller

The controllability of speed and torque in an induction motor without any peak overshoot and less ripples with good transient and steady state responses are the main criteria’s in the designing of a controller. However, PI controller is able to achieve these up to some extent but having some drawbacks. The gains cannot be increased beyond certain edge so as to have an improved response. Moreover, it causes non linearity into the system making it more complex for analysis. Also it reduces the controller performance.[3]

Now with the advent of new technology as artificial intelligent techniques, these drawbacks can be reduced. One such technique is the use of neural network in the design of controller. This project work proposes the development of a neural network controller in place of PI controller commonly used in the vector control structure for efficient speed control and smaller settling time. It is expected that the proposed modified vector control structure based on neural network controller smoothen out the ripples in the motor torque and stator currents as well as will provide best speed regulation with smaller steering time requirement. Fig. 2[7] shows the block diagram representation of proposed Neural Network Controller (NN Controller) based indirect vector control of induction motor.

![Figure 1. Indirect Vector control of induction Motor](image1.png)

![Figure 2. Proposed NN controller based indirect Vector control of induction motor](image2.png)
Current and Voltage Measurement blocks are there to provide signals. At the output of the Asynchronous Machine block the motor current, speed and torque signals are also available.

V. SIMULATION RESULTS OF INDIRECT VECTOR CONTROLLED INDUCTION MOTOR SPEED CONTROL

After the Successful simulation of first model for the reference speed 120 RPM, the resultant speed control performance of PI controller based indirect vector controller is shown from figure (4) to figures (6).

![Figure 4](image1.png)

Figure 4. Plot of Output current of induction motor for PI controller based indirect vector controller for reference speed 120 RPM

![Figure 5](image2.png)

Figure 5. Plot of Output torque of induction motor for PI controller based indirect vector controller reference speed 120 RPM

![Figure 6](image3.png)

Figure 6. Figure V Plot of Output speed of induction motor for PI controller based indirect vector controller reference speed 120 RPM

Figure 3. Simulation model for the speed control of induction motor using indirect vector.
From the figure 6 it shows the speed response of PI based indirect vector control of induction motor, it is shown that this technique doesn’t able to provide good control of speed, because it provides high overshoot of 20 RPM and also taking time of 2.5 seconds for settle down.

VI. CONCLUSION

The speed regulation and control of induction motor becomes very critical problem, because of rising in the popularity of induction motors in numerous industrial fields. The proposed vector control structure based on neural network controller of this paper will be able to smoothens out the ripples in the motor torque and stator currents as well as will provide best speed regulation with smaller settling time requirement. The proposed vector control structure based on neural network controller smoothens out the ripples in the motor torque and stator currents as well as will provide best speed regulation with smaller settling time requirement.

REFERENCES